Neuroscience
-
Obsessive-Compulsive Disorder (OCD) is characterized by maladaptive patterns of repetitive, inflexible cognition and behavior that suggest a lack of cognitive flexibility. Consistent with this clinical observation, many neurocognitive studies suggest behavioral and neurobiological abnormalities in cognitive flexibility in individuals with OCD. Meta-analytic reviews support a pattern of cognitive inflexibility, with effect sizes generally in the medium range. ⋯ Several studies have described abnormalities in neural activation in the absence of differences in behavioral performance, suggesting that our behavioral probes may not be adequately sensitive, but also offering important insights into potential compensatory processes. The fact that deficits of moderate effect size are seen across a broad range of classic neuropsychological tests in OCD presents a conceptual challenge, as clinical symptomatology suggests greater specificity. Traditional cognitive probes may not be sufficient to delineate specific domains of deficit in this and other neuropsychiatric disorders; a new generation of behavioral tasks that test more specific underlying constructs, supplemented by neuroimaging to provide insight into the underlying processes, may be needed.
-
The lateral habenula (LHb) is known to play an important role in signaling aversive or adverse events that have happened or are predicted by cues under Pavlovian conditions. In rodents, it is also required for behavioral flexibility when changes in reward outcomes signal that strategies should be changed. It is not known whether the LHb also controls appetitive behaviors when an animal is able to utilize external cues proactively to guide upcoming decisions. ⋯ Once a correct choice was made in a given block, LHb inactivated rats did not make more errors than controls. A control study revealed that the LHb is not required for tone or reward magnitude discrimination per se. These results demonstrate for the first time that the LHb contributes to behavioral flexibility through utilizing both proactive and retroactive information when performing appetitive tasks.
-
Cognitive biases may play a significant role in disorders of decision making such as pathological gambling and addiction. Understanding the neurobiology of these biases could lead to more effective pharmacological and therapeutic treatments for disorders in which aberrant decision making is prominent. The rodent Betting Task (rBT) was designed to measure one commonly observed decision-making heuristic in rodents, namely "escalation of commitment" in which subjects become more risk averse as the stakes increase, even if the odds of success remain constant. ⋯ In the current study, the orbitofrontal (OFC), prelimbic (PrL), and infralimbic cortex (IL) were inactivated to evaluate the contributions made by these regions to choice behavior on the rBT. Inactivation of the OFC (but not the IL or the PrL) selectively ameliorated the risk-averse choice pattern characteristic of wager-sensitive animals. This finding suggests that the OFC may have a relatively unique role in promoting this type of non-normative decision-making under uncertainty, an effect that is potentially related to its role in representing the subjective value of reinforcing outcomes.
-
Amphetamine and other drugs of abuse have both short-term and long-lasting effects on brain function, and drug sensitization paradigms often result in chronic impairments in behavioral flexibility. Here we show that acute amphetamine administration temporarily renders rats less sensitive to reward omission, as revealed by a decrease in lose-shift responding during a binary choice task. Intracerebral infusions of amphetamine into the ventral striatum did not affect lose-shift responding but did increase impulsive behavior in which rats chose to check both reward feeders before beginning the next trial. ⋯ These treatments did not affect choices on trials following reward delivery (i.e. win-stay responding), and sensitization increased spine density in the sensorimotor striatum. The dichotomous effects of amphetamine on short-term and long-term loss sensitivity, and the null effect on win-stay responding, are consistent with a shift of behavioral control to the sensorimotor striatum after drug sensitization. These data provide a new demonstration of such a shift in a novel task unrelated to drug administration, and suggests that the dominance of sensorimotor control persists over many hundreds of trials after sensitization.
-
The role of the thalamus in complex cognitive behavior is a topic of increasing interest. Here we demonstrate that lesions of the nucleus reuniens (NRe), a midline thalamic nucleus interconnected with both hippocampal and prefrontal circuitry, lead to enhancement of executive behaviors typically associated with the prefrontal cortex. Rats were tested on four behavioral tasks: (1) the combined attention-memory (CAM) task, which simultaneously assessed attention to a visual target and memory for that target over a variable delay; (2) spatial memory using a radial arm maze, (3) discrimination and reversal learning using a touchscreen operant platform, and (4) decision-making with delayed outcomes. ⋯ This change, combined with a decrease in perseverative responses, led to focused attention in the CAM task and accelerated learning in the visual discrimination task. There were no observed changes in tasks involving either spatial memory or value-based decision making. These data complement ongoing efforts to understand the role of midline thalamic structures in human cognition, including the development of thalamic stimulation as a therapeutic strategy for acquired cognitive disabilities (Schiff, 2008; Mair et al., 2011), and point to the NRe as a potential target for clinical intervention.