Neuroscience
-
Cognitive flexibility has traditionally been considered a frontal lobe function. However, converging evidence suggests involvement of a larger brain circuit which includes the cerebellum. Reciprocal pathways connecting the cerebellum to the prefrontal cortex provide a biological substrate through which the cerebellum may modulate higher cognitive functions, and it has been observed that cognitive inflexibility and cerebellar pathology co-occur in psychiatric disorders (e.g., autism, schizophrenia, addiction). ⋯ A positive relationship was observed between Purkinje cells and errors when exemplars from a novel, non-relevant dimension were introduced. Collectively, these data suggest that the cerebellum contributes to higher order cognitive flexibility, lower order cognitive flexibility, and attention to novel stimuli, but not the acquisition of higher and lower order rules. These data indicate that the cerebellar pathology observed in psychiatric disorders may underlie deficits involving cognitive flexibility and attention to novel stimuli.
-
The role of the thalamus in complex cognitive behavior is a topic of increasing interest. Here we demonstrate that lesions of the nucleus reuniens (NRe), a midline thalamic nucleus interconnected with both hippocampal and prefrontal circuitry, lead to enhancement of executive behaviors typically associated with the prefrontal cortex. Rats were tested on four behavioral tasks: (1) the combined attention-memory (CAM) task, which simultaneously assessed attention to a visual target and memory for that target over a variable delay; (2) spatial memory using a radial arm maze, (3) discrimination and reversal learning using a touchscreen operant platform, and (4) decision-making with delayed outcomes. ⋯ This change, combined with a decrease in perseverative responses, led to focused attention in the CAM task and accelerated learning in the visual discrimination task. There were no observed changes in tasks involving either spatial memory or value-based decision making. These data complement ongoing efforts to understand the role of midline thalamic structures in human cognition, including the development of thalamic stimulation as a therapeutic strategy for acquired cognitive disabilities (Schiff, 2008; Mair et al., 2011), and point to the NRe as a potential target for clinical intervention.
-
Central infusion of the Na+/K+-ATPase inhibitor, ouabain in rats serves as an animal model of mania because it leads to hyperactivity, as well as reproduces ion dysregulation and reduced brain-derived neurotrophic factor (BDNF) levels similar to that observed in bipolar disorder. Bipolar disorder is also associated with cognitive inflexibility and working memory deficits. It is unknown whether ouabain treatment in rats leads to similar cognitive flexibility and working memory deficits. ⋯ Ouabain treatment also decreased sensitivity to negative feedback during the initial phase of reversal learning. Expression of BDNF mRNA and protein levels was downregulated in the frontal cortex which also negatively correlated with regressive errors. These findings suggest that the ouabain model of mania may be useful in understanding the neuropathophysiology that contributes to cognitive flexibility deficits and test potential treatments to alleviate cognitive deficits in bipolar disorder.
-
In a continuously changing environment, in which behavioral outcomes are rarely certain, animals must be able to learn to integrate feedback from their choices over time and adapt to changing reward contingencies to maintain flexible behavior. The orbitofrontal region of prefrontal cortex (OFC) has been widely implicated as playing a role in the ability to flexibly control behavior. We used a probabilistic reversal learning task to measure rats' behavioral flexibility and its neural basis in the activity of single neurons in OFC. ⋯ Generally, activity was higher following rewarded choices than unrewarded. However, there was a correlation between reduced responses to reward following incorrect choices and the establishment of the preference for the correct lever. These results show how signaling by individual OFC neurons may participate in the flexible adaptation of behavior under changing reward contingencies.