Neuroscience
-
It was postulated that neuropeptide Y (NPY)-ergic system could be involved in the ischemic pathophysiology, however, the role of particular subtypes of NPY receptors (YRs) in neuroprotection against ischemia is still not well known. Therefore, we investigated the effect of NPY and YR ligands using in vitro and in vivo experimental ischemic stroke models. Our in vitro findings showed that NPY (0.5-1μM) and specific agonists of Y2R (0.1-1μM) and Y5R (0.5-1μM) but not that of Y1R produced neuroprotective effects against oxygen-glucose deprivation (OGD)-induced neuronal cell death, being also effective when given 30min after the end of OGD. ⋯ Data from in vivo studies demonstrated that Y2R agonist (10μg/6μl; i.c.v.) not only diminished the infarct volume in rats subjected to transient middle cerebral artery occlusion (MCAO) but also improved selected gait parameters in CatWalk behavioral test, being also effective after delayed treatment. Moreover, we found that a Y5R agonist (10μg/6μl; i.c.v.) did not reduce MCAO-evoked brain damage but improved stride length, when it was given 30min after starting the occlusion. In conclusion, our studies indicate that Y5 and especially Y2 receptors may be promising targets for neuroprotection against ischemic damage.
-
Neuroplasticity has been subject to a great deal of research in the last century. Recently, significant emphasis has been placed on the global effect of localized plastic changes throughout the central nervous system, and on how these changes integrate in a pathological context. ⋯ In this paper we will review the concepts of neural plasticity as well as their repercussions on network remodeling and provide a possible explanation to how these two concepts relate to each other. We will further examine how alterations in different pathological contexts may relate to each other and will discuss the concept of plasticity diseases, its models and implications.
-
About 7.5million adults in Germany cannot read and write properly despite attending school for several years. They are considered to be functional illiterates. Since the ability to read and write is crucial for being employed and socially accepted, we developed a literacy training to overcome these deficits. ⋯ Moreover, the increase was positively correlated with reading and writing skills. The findings suggest that poor literacy skills are associated with several structural abnormalities in reading-related brain areas. In addition, we showed that while literacy skills of functional illiterates improved after training, the structural differences to controls disappeared.
-
Structural connectome measurement combined with diffusion magnetic resonance imaging (MRI) and tractography allows generation of a whole-brain connectome. However, current cortical structural connectivity (SC) measurements have not been well combined with the vertex-wise multi-subjects statistical analysis. The aim of this study was to examine the feasibility of using group comparison vertex-wise analysis for cortical SC measurement. ⋯ This study demonstrated the feasibility of vertex-wise group comparison for evaluating cortical fiber connectivity density. The FiCD method has good intra- and inter-individual reproducibility, and accurately reflects the affected cortical regions in post-stroke patients. This method may be helpful for neuroscience research.
-
Cortico-cortical connectivity has become a major focus of neuroscience in the last decade but most of the connectivity studies focused on intrahemispheric circuits. Little has been reported about information acquired and processed in the premotor cortex and its functional connection with its homotopic counterpart in the opposite hemisphere via the corpus callosum. In non-human primates (macaques) lateralization is not well documented and its exact role is still unknown. ⋯ Our method consisted of identifying the connections with all the homo- and heterotopic cortical areas located in the contralateral hemisphere. The results showed that PMd and PMv receive multiple low-density labeled inputs from the opposite heterotopic prefrontal, parietal, motor, insular and temporal regions. Such unexpected collection of transcallosal inputs from heterotopic areas suggests that the premotor areas communicate with other modalities through long distance low-density networks which could have important implications in the understanding of sensorimotor and multimodal integration.