Neuroscience
-
Cysteine protease Cathepsin S (CatS) expressed by spinal microglia has been shown to play a critical role in nerve injury and inflammation-induced chronic pain. However, whether microglial CatS contributes to remifentanil-induced acute hyperalgesia remains unstudied. In the present study, intravenous remifentanil infusion induced a significant increase in the expression of premature and mature form of CatS in the activated microglia in the spinal cord. ⋯ However, increased protein level of premature form of CatS was not affected by PBN. Altogether, our findings demonstrate that neuronal ROS promote maturation of microglial CatS which facilitates activation of NMDA in the spinal dorsal horn. Therefore, such mechanism is involved in neuron-microglia positive feedback and contributes to remifentanil-induced hyperalgesia.
-
Mutations in the Pejvakin (Pjvk) gene cause autosomal recessive hearing loss DFNB59 with audiological features of auditory neuropathy spectrum disorder (ANSD) or cochlear dysfunction. The precise mechanisms underlying the variable clinical phenotypes of DFNB59 remain unclear. Here, we demonstrate that mice with conditional ablation of the Pjvk gene in all sensory hair cells or only in outer hair cells (OHCs) show similar auditory phenotypes with early-onset profound hearing loss. ⋯ Using the C-terminal domain of pejvakin as bait, we identified in a cochlear cDNA library ROCK2, an effector for the small GTPase Rho, and the scaffold protein IQGAP1, involved in modulating actin dynamics. Both ROCK2 and IQGAP1 associate via their coiled-coil domains with pejvakin. We conclude that pejvakin is required to sustain OHC activity and survival in a cell-autonomous manner likely involving regulation of Rho signaling.
-
Patients with dysphagia can have higher risks of aspiration after repetitive swallowing activity due to the "fatigue effect". However, it is still unknown how consecutive swallows affect brain activity. Therefore, we sought to investigate differences in swallowing brain networks formed during consecutive swallows using a signal processing on graph approach. ⋯ The proposed algorithms were tested using synthetic signals and showed improved energy concentration in comparison to the original algorithm. When applied to EEG swallowing data, the optimized windowed graph Fourier transform and the optimized graph S-transform showed that differences exist in brain activity between consecutive swallows. In addition, the results showed higher differences between consecutive swallows for thicker liquids.
-
Ketamine and other noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists are known to induce deficits in learning and cognitive performance sensitive to prefrontal cortex (PFC) functions. The interaction of a glutamatergic and GABAergic systems is essential for many cognitive behaviors. In order to understand the effect of γ-aminobutyric acid (GABA)/glutamate interactions on learning and memory, we investigated the effects of intra medial prefrontal cortex (mPFC) injections of GABAergic agents on ketamine-induced amnesia using a one-trial passive avoidance task in mice. ⋯ Our data showed that sole pre-training administration of bicuculline, GABA-A receptor antagonist and phaclofen GABA-B receptor antagonist into the mPFC, did not affect memory acquisition. In addition, the amnesia induced by pre-training ketamine (15mg/kg) was significantly decreased by the pretreatment of bicuculline (0.005, 0.1 and 0.5μg/mouse). It can be concluded that GABAergic system of the mPFC is involved in the ketamine-induced impairment of memory acquisition.
-
Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week-old EAAT3 knockout (EAAT3-/-) mice and their wild-type littermates received 3 intraperitoneal injections of 10mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). ⋯ Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP.