Neuroscience
-
The cerebellum is known to be involved in temporal information processing. However, the underlying neuronal mechanisms remain unclear. In our previous study, monkeys were trained to make a saccade in response to a single omission of periodically presented visual stimuli. ⋯ We found that electrical stimulation just before the stimulus omission shortened the latencies of both contraversive and ipsiversive saccades. Because the changes in saccade latency non-linearly depended on the timing of stimulation in each inter-stimulus interval, and electrical stimulation just before the early stimulus in the sequence failed to evoke saccades, the neuronal activity in the dentate nucleus might regulate temporal prediction rather than facilitating saccade execution. Our results support the hypothesis that the firing modulation in each inter-stimulus interval in the dentate nucleus represents neuronal code for the temporal prediction of next stimulus.
-
The unsaturated fatty acid, oleate exhibits anorexigenic properties reducing food intake and hepatic glucose output. However, its mechanism of action in the hypothalamus has not been fully determined. This study investigated the effects of oleate and glucose on GT1-7 mouse hypothalamic cells (a model of glucose-excited (GE) neurons) and mouse arcuate nucleus (ARC) neurons. ⋯ Perforated patch and whole-cell recordings from mouse hypothalamic slices demonstrated that oleate hyperpolarized a subpopulation of ARC GE neurons by KATP activation. Additionally, in a separate small population of ARC neurons, oleate application or lowered glucose concentration caused membrane depolarization. In conclusion, oleate induces KATP-dependent hyperpolarization and inhibition of firing of a subgroup of GE hypothalamic neurons without altering cellular energy charge.
-
The somatostatin 4 receptor (sst4) is widely expressed in stress-related brain areas (e.g. hippocampus, amygdala) and regulates the emotional behavior in acute situations. Since its importance in chronic stress-induced complex pathophysiological alterations is unknown, we investigated the involvement of sst4 in the responsiveness to chronic variable stress (CVS). Sstr4 gene-deficient (Sstr4-/-) mice and their wildtype counterparts (Sstr4+/+) were used to examine the behavioral and neuroendocrine alterations as well as chronic neuronal activity (FosB expression) changes in response to CVS. ⋯ Basal plasma corticosterone concentrations did not change after the CVS in either genotype. FosB immunopositivity in the central and basolateral amygdaloid nuclei was enhanced in stressed knockouts, but not in wild types. This is the first evidence that sst4 activation is involved in the behavioral and neuroendocrine alterations induced by chronic stress with a crucial role of plastic changes in the amygdala.
-
Alcohol exposure elicits the production of cytokines that regulate the host response to infection, immunity, inflammation, and trauma. Although increased production of pro-inflammatory cytokines has been linked to symptoms of alcoholism, few studies have evaluated whether cytokine expression changes across the development of alcohol dependence, or whether these changes are region and/or sex specific. In the present study, we subjected adult male and female rats to different regimens of alcohol vapor exposure (acute, subchronic, or chronic) and measured relative mRNA expression for tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and chemokine (C-C motif) ligand 2 (CCL2) in reward-related brain regions. ⋯ Chronic alcohol exposure (6week daily intermittent exposure, 14 h on: 10 h off) increased TNFα mRNA expression in the NAc and increased IL-6 mRNA in the vmPFC and NAc. Interestingly, chronic alcohol exposure also robustly increased CCL2 mRNA expression in the BLA and VTA in males but not females. Thus, alcohol vapor exposure elicits sex-, region-, and duration-specific cytokine alterations that may contribute to differences in the manifestation and progression of symptoms of alcohol dependence in male and female populations.
-
Previous research has demonstrated that aerobic exercise has disparate effects on speed of processing and movement execution. In simple and choice reaction tasks, aerobic exercise appears to increase speed of movement execution while speed of processing is unaffected. In the flanker task, aerobic exercise has been shown to reduce response time on incongruent trials more than congruent trials, purportedly reflecting a selective influence on speed of processing related to cognitive control. ⋯ Reaction time during incongruent flanker trials decreased over time in both an aerobic exercise and non-exercise control condition indicating it was not specifically influenced by exercise. This disparate influence of aerobic exercise on movement time and reaction time indicates the importance of partitioning response time when examining the influence of aerobic exercise on speed of processing. The decrease in reaction time over time independent of aerobic exercise indicates that interpreting pre-to-post exercise changes in behavior requires caution.