Neuroscience
-
Multiple sclerosis (MS) patients are three to six times more likely to develop epilepsy compared to the rest of the population. Seizures are more common in patients with early onset or progressive forms of the disease and prognosticate rapid progression to disability and death. ⋯ Immunohistochemical (IHC) analyses within the hippocampal CA1 region revealed extensive demyelination, loss of parvalbumin (PV+) interneurons, widespread gliosis, and changes in aquaporin-4 (AQP4) expression. Our results suggest that chronically demyelinated mice are a valuable model with which we may begin to understand the mechanisms underlying demyelination-induced seizures.
-
Genistein (GEN) is a natural xenoestrogen (isoflavonoid) that may interfere with the development of estrogen-sensitive neural circuits. Due to the large and increasing use of soy-based formulas for babies (characterized by a high content of GEN), there are some concerns that this could result in an impairment of some estrogen-sensitive neural circuits and behaviors. In a previous study, we demonstrated that its oral administration to female mice during late pregnancy and early lactation induced a significant decrease of nitric oxide synthase-positive cells in the amygdala of their male offspring. ⋯ This last observation suggests that GEN may act through different intracellular pathways. Present results indicate that the effect of natural xenoestrogens on the development of the brain may be highly variable: a plethora of neuronal circuits may be affected depending on sex, time of exposure, intracellular pathway involved, and target cells. This raises concern on the possible long-term effects of the use of soy-based formulas for babies, which may be currently underestimated.
-
The state of microglial activation provides important information about the central nervous system. However, a reliable index of microglial activation in histological samples has yet to be established. Here, we show that microglial activation induces topological changes of Iba1 localization that can be detected by analysis based on homology theory. ⋯ The HV of a tissue area increased with proximity to the ischemic core and showed a high degree of concordance with the number of microglia expressing activation makers. Furthermore, the HV of human metastatic brain tumor tissue also increased with proximity to the tumor. These results suggest that our index, based on homology theory, can be used to correctly evaluate microglial activation in various tissue images.
-
Brain dysfunction is a frequent complication of the systemic inflammatory response to bacterial infection or sepsis. In the present work, the effects of intravenous bacterial lipopolysaccharide (LPS) administration on cerebral arterial blood flow were assessed with time-of-flight (TOF)-based magnetic resonance angiography (MRA) in mice. Cerebral expression of the transcription factors nuclear factor-kappaB (NF-κB) and c-Fos and that of enzymes synthesizing vasoactive mediators, such as prostaglandins and nitric oxide, known to be increased under inflammatory conditions, were studied in the same animals. ⋯ LPS also increased cerebral expression of cyclooxygenase-2 and prostaglandin E synthase mRNAs, but de novo expression occurred in veins rather than in arteries. In conclusion, our work indicates that LPS-induced systemic inflammation does not necessarily affect filling of the circle of the Willis from the periphery, but that circulating LPS alters outflow from the circle of Willis to the middle and anterior cerebral arteries. These modifications in arterial flow were not related to increased cerebral synthesis of prostaglandins, but may instead be the consequence of the action of circulating prostaglandins and other vasoactive mediators on brain-irrigating arteries during systemic inflammation.
-
In adult stroke models, the neuroprotective protein, Iduna, inhibits poly (ADP-ribose) polymerase-1 (PARP-1)-dependent cell death by decreasing apoptosis-inducing factor (AIF) nuclear translocation. Because the PARP1-dependent pathway and Iduna, which promotes AIF degradation, contribute to hypoxic-ischemic (HI) brain damage in the immature brain, we examined the relationship between Iduna expression and AIF nuclear translocation in the cerebral cortex of postnatal day 7 rats after HI. Ninety rats were divided into three groups: sham, 1-h hypoxia and 2-h hypoxia. ⋯ Furthermore, Iduna downregulation negatively correlated with nuclear AIF abundance in the 2-h HI group (r=-0.950; P<0.0001). Additionally, learning and memory ability decreased with hypoxic time. These results suggest that AIF nuclear translocation and neuronal cell death are associated with Iduna loss after severe HI in the immature brain.