Neuroscience
-
Alteration in gene expression along the pain signaling pathway is a key mechanism contributing to the genesis of neuropathic pain. Accumulating studies have shown that epigenetic regulation plays a crucial role in nociceptive process in the spinal dorsal horn. In this present study, we investigated the role of enhancer of zeste homolog-2 (EZH2), a subunit of the polycomb repressive complex 2, in the spinal dorsal horn in the genesis of neuropathic pain in rats induced by partial sciatic nerve ligation. ⋯ Intrathecal injection of the EZH2 inhibitor attenuated the development and maintenance of mechanical and thermal hyperalgesia in rats with nerve injury. Such analgesic effects were concurrently associated with the reduced levels of EZH2, H3K27TM, Iba1, GFAP, TNF-α, IL-1β, and MCP-1 in the spinal dorsal horn in rats with nerve injury. Our results highly suggest that targeting the EZH2 signaling pathway could be an effective approach for the management of neuropathic pain.
-
Altered corneal reflex activity is a common feature of dry eye disease (DE). Trigeminal sensory nerves supply the ocular surface and terminate at the trigeminal interpolaris/caudalis (ViVc) transition and spinomedullary (VcC1) regions. Although both regions contribute to corneal reflexes, their role under dry eye conditions is not well defined. ⋯ Blockade of N-methyl-D-aspartate (NMDA) receptors at either region reduced HS-evoked OOemgL activity in DE and sham rats. GABAαβ3 receptor density was reduced at the ViVc transition, while NMDA receptor density was increased at both regions in DE rats. Loss of GABAergic inhibition at the ViVc transition coupled with enhanced NMDA excitatory amino acid neurotransmission at the ViVc transition and the VcC1 region likely contribute to altered corneal reflexes under dry eye conditions.
-
Neuroinflammation is known to play a key role in the prognosis of functional recovery after spinal cord injury (SCI). The involvement of microglial and mast cells in early and late stages of inflammation has been receiving increasing attention. This study was aimed at determining the influence of a pro-inflammatory cytokine, the granulocyte macrophage-colony stimulating factor (GM-CSF), on microglia and mast cell activation, glial scar formation and functional recovery following SCI. ⋯ A transient decrease in pro-inflammatory cytokines after GM-CSF treatment was also observed, whereas the endogenous GM-CSF level was unchanged. While the beneficial role of GM-CSF in reducing glial scar is confirmed, our findings reveal that neuroinflammatory events mediated by microglial and mast cells as well as the alteration of IL-1β and IL-6 levels are paralleled with an improvement in tactile recovery. These mechanisms could limit the duration and intensity of homeostatic imbalance and promote the plasticity of spared tissues.
-
Morphine actions involve the dopamine (DA) D1 and D3 receptor systems (D1R and D3R), and the responses to morphine change with age. We here explored in differently aged wild-type (WT) and D3R knockout mice (D3KO) the interactions of the D1R/D3R systems with morphine in vivo at three different times of the animals' lifespan (2months, 1year, and 2years). ⋯ Lastly, (5) block of D1R function in young D3KO animals mimicked the behavioral phenotype observed in the aged WT. Our proof-of-concept data from the rodent animal model suggest that, with age, block of D1R function may be considered as an alternative to the use of morphine, to modulate the response to painful stimuli.
-
Dense reciprocal connections link the rat anterior thalamic nuclei with the prelimbic, anterior cingulate and retrosplenial cortices, as well as with the subiculum and postsubiculum. The present study compared the ipsilateral thalamic-cortical connections with the corresponding crossed, contralateral connections between these same sets of regions. All efferents from the anteromedial thalamic nucleus to the cortex, as well as those to the subiculum, remained ipsilateral. ⋯ Likewise, within the hippocampus, the postsubiculum seemingly had only ipsilateral efferent and afferent connections with the anterior thalamic and laterodorsal nuclei. While the bilateral cortical projections to the anterior thalamic nuclei originated predominantly from layer VI, the accompanying sparse projections from layer V largely gave rise to ipsilateral thalamic inputs. In testing a potentially unifying principle of anterior thalamic - cortical interactions, a slightly more individual pattern emerged that reinforces other evidence of functional differences within the anterior thalamic and also helps to explain the consequences of unilateral interventions involving these nuclei.