Neuroscience
-
The prefrontal cortex and the amygdala are critical for the emotional guidance of behavior and are believed to be a site of action for many anxiolytics and anxiogenics. Despite extensive studies examining how these drugs affect behavior, there is little information regarding their effects on neuronal activity. Additionally, with recent recognition of anxiety as a non-motor symptom of Parkinson's disease, it is unknown if activity in the cortex and the amygdala is altered. ⋯ On the other hand, yohimbine treatment (5mg/kg, SubQ) coincided with lower neuronal spiking activity compared to controls in the BLA of sham-lesioned rats, but was unchanged from controls in hemiparkinsonian rats. Yohimbine did not affect ACC neuronal spiking activity in either group. Overall, the lack of ACC responsiveness to diazepam in hemiparkinsonian, but not sham-lesioned rats underscores a plausible fundamental difference in anxiety-related neural signaling between animal groups.
-
Transgenic knock-in (KI) mice that express CaV2.1 channels containing an R192Q gain-of-function mutation in the α1A subunit known to cause familial hemiplegic migraine type-1 in patients, exhibit key disease characteristics and provide a useful tool to investigate pathophysiological mechanisms of pain transduction. Previously, KI trigeminal sensory neurons were shown to exhibit constitutive hyperexcitability due to up-regulation of ATP-gated P2X3 receptors that trigger spike activity at a more negative threshold. This implies that intrinsic neuronal conductances may shape action potential generation in response to ATP, which could act as a mediator of migraine headache. ⋯ In KI TG neurons, HCN2 subunits were predominantly present in the cytoplasm, not at the plasma membrane, likely accounting for the smaller Ih of such cells. ZD7288 hyperpolarized the membrane potential, thereby raising the firing threshold, and prolonging the spike trajectory to generate fewer spikes due to P2X3 receptor activation. The low amplitude of Ih in KI TG neurons suggests that down-regulation of Ih current in sub-threshold behavior acts as a compensatory mechanism to limit sensory hyperexcitability, manifested under certain stressful stimuli.
-
Sodium-activated potassium (KNa) channels contribute to firing frequency adaptation and slow after hyperpolarization. The KCNT1 gene (also known as SLACK) encodes a KNa subunit that is expressed throughout the central and peripheral nervous systems. Missense mutations of the SLACK C-terminus have been reported in several patients with rare forms of early onset epilepsy and in some cases severely delayed myelination. ⋯ Loxapine exhibited no effect, indicating that this mutation either caused the channel to be insensitive to this established opener or proper translation and trafficking to the membrane was disrupted. Protein analysis confirmed that while total mutant protein did not differ from wild type, membrane expression of the mutant channel was substantially reduced. Although gain-of-function mutations to the Slack channel are linked to epileptic phenotypes, this is the first reported loss-of-function mutation linked to severe epilepsy and delayed myelination.
-
Glioma, one of the most common cancers in human, is classified to different grades according to the degrees of malignancy. Glioblastoma (GBM) is known to be the most malignant (Grade IV) whereas low-grade astrocytoma (LGA, Grade II) is relatively benign. The mechanism underlying the pathogenesis and progression of glioma malignancy remains unclear. ⋯ Interaction network analysis indicated that the GBM-associated proteins in the RNA processing were linked to crucial signaling transduction modulators including epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 1 (STAT1), and mitogen-activated protein kinase 1 (MAPK1), which were further connected to the proteins important for neuronal structural integrity, development and functions. Upregulation of 40S ribosomal protein S5 (RPS5), Ferritin Heavy chain (FTH1) and STAT1, and downregulation of tenascin R (TNR) were validated as representatives by immune assays. In summary, we revealed a panel of GBM-associated proteins and the important modulators centered at the RNA-processing network in glioma malignancy that may become novel biomarkers and help elucidate the underlying mechanism.
-
Semaphorins comprise a family of proteins involved in axon guidance during development. Semaphorin4D (Sema4D) has both neuroregenerative and neurorepressive functions, being able to stimulate both axonal outgrowth and growth cone collapse during development, and therefore could play an important role in neurological recovery from traumatic injury. Here, we used a zebrafish spinal cord transection model to study the role of Sema4D in a system capable of neuroregeneration. ⋯ Anterograde and retrograde tracing indicate that Sema4D participates in axon regeneration in the spinal cord following spinal cord injury (SCI) in the zebrafish. Swim tracking shows that MO-mediated inhibition of Sema4D retarded the recovery of swimming function when compared to standard control MO. The combined results indicate that Sema4D expression in motoneurons enhances locomotor recovery and axon regeneration, possibly by regulating microglia function, after SCI in adult zebrafish.