Neuroscience
-
Spontaneous epileptiform activity has previously been observed in lateral amygdala (LA) slices derived from patients with intractable-temporal lobe epilepsy. The present study aimed to characterize intranuclear LA synaptic connectivity and to test the hypothesis that differences in the spread of flow of neuronal activity may relate to spontaneous epileptiform activity occurrence. Electrical activity was evoked through electrical microstimulation in acute human brain slices containing the LA, signals were recorded as local field potentials combined with fast optical imaging of voltage-sensitive dye fluorescence. ⋯ No differences in spread of evoked activity were observed between spontaneously and non-spontaneously active LA slices, i.e. basic properties of evoked synaptic responses were similar in the two functional types of LA slices, including input-output relationship, and paired-pulse depression. These results indicate a directed propagation of synaptic signals within the human LA in spontaneously active epileptic slices. We suggest that the lack of differences in local and in systemic information processing has to be found in confined epileptiform circuits within the amygdala likely involving well-known "epileptic neurons".
-
The aim of the present study was to determine whether thoracic spinal manipulation (SM) decreases temporal summation of back pain. The study comprised two controlled experiments including 16 and 15 healthy participants, respectively. Each study included six sessions during which painful or non-painful electrical stimulations were delivered in three conditions: (1) control (2) light mechanical stimulus (MS) or (3) SM. ⋯ Changes were not significant for the MS sessions (all p's>0.05) and no effect was observed for the tactile sensation (all p's>0.1). These results indicate that SM produces specific inhibitory effects on temporal summation of back pain, consistent with the involvement of a spinal anti-nociceptive mechanism in clinical pain relief by SM. This provides the first mechanistic evidence of back pain relief by spinal manipulation.
-
Glycosyltransferases are enzymes that catalyze the formation of a variety of glycoconjugates. Glycoconjugates play important roles in the nervous system. β-1,3-Galactosyltransferase 2 (B3galt2) belongs to the family of β-1,3-galactosyltransferase, which is one of the major types of glycosyltransferases. Dental pulp inflammation may cause neurophysiological alterations in the trigeminal ganglion (TG), and serve as a good model for investigating the peripheral inflammation and trigeminal neuronal sensitization. ⋯ The expression of TLR4 and NFκB in the TG was activated during the inflammation, but B3galt2 gene knockdown inhibited the expression of TLR4 and NFκB. These observations indicated that dental pulp inflammation could induce B3galt2 expression in TG, and that B3galt2 might play a regulatory role in TG neuronal sensitization. These findings suggest that B3galt2 may play an important role in trigeminal neuronal sensitization induced by peripheral inflammation via mediating TLR4/NFκB signaling pathway.
-
Neuropathic pain is absent in infants and emergent years after injury. Adult spinal cord microglia play a key role in initiating neuropathic pain, and modulation of microglia is a potential target for treating neuropathic pain. In this study, we evaluated the role of microglia after infant peripheral nerve injury and the effect of exercise on the delayed-onset neuropathic pain. ⋯ Exercise shifted spinal cord microglia polarization to the M2 phenotype and reduced neuropathic pain. In addition, IL-10 increased and TNF-α decreased after exercise, and intrathecal injection of the IL-10 antibody reduced the exercise-induced analgesia. Our study found that infant nerve injury induced delayed spinal cord microglia polarization to the M1 phenotype and that exercise was effective in the treatment of delayed adolescent neuropathic pain via the modulation of microglial polarization.
-
The metabolic pathophysiology underlying ischemic stroke remains poorly understood. To gain insight into these mechanisms, we performed a comparative metabolic and transcriptional analysis of the effects of cerebral ischemia on the metabolism of the cerebral cortex using middle cerebral artery occlusion (MCAO) rat model. Metabolic profiling by gas-chromatography/mass-spectrometry analysis showed clear separation between the ischemia and control group. ⋯ Furthermore, intracerebroventricular injection of ataxia telangiectasia mutated (ATM) kinase inhibitor (KU-55933) significantly reduced HSP27 phosphorylation and G6PD upregulation after MCAO, but that of protein kinase D inhibitor (CID755673) did not affect HSP27 phosphorylation. Consequently, G6PD activation via ischemia-induced HSP27 phosphorylation by ATM kinase may be part of an endogenous antioxidant defense neuroprotection mechanism during the earliest stages of ischemia. These findings have important therapeutic implications for the treatment of stroke.