Neuroscience
-
Diabetes mellitus represents a group of metabolic diseases that are characterized by hyperglycemia caused by either lack of insulin production or a reduced ability to respond to insulin. It is estimated that there were 347 million people worldwide who suffered from diabetes in 2008 and incidence is predicted to double by 2050. Neuropathy is the most common complication of long-term diabetes and approximately 30% of these subjects develop chronic neuropathic pain. ⋯ In the current study, we developed chronic and acute insulin-induced neuropathic pain in mice with type 2 insulin-resistant diabetes. Furthermore, we determined that insulin-induced acute allodynia is independent of glycemia levels, can also be induced with Insulin-like Growth Factor 1 (IGF1) and be prevented by inhibition of AKT, providing evidence of an insulin/IGF1 signaling pathway-based mechanism for TIND. This mouse model is useful for the elucidation of mechanisms contributing to TIND and for the testing of new therapeutic approaches to treat TIND.
-
Brain microvascular endothelial cell (BMEC) injury induced by ischemia-reperfusion (I/R) is the initial stage of blood-brain barrier (BBB) disruption, which results in a poor prognosis in ischemic stroke patients. Autophagy has been shown to have protective effects on BMECs against cerebral ischemic insults. However, molecular mechanism of BMEC autophagy during I/R is unclear. ⋯ We further explored the molecular mechanisms by which Malat1 exerted regulatory effects, and found that Malat1 served as an endogenous sponge to downregulate miR-26b expression by binding directly to miR-26b. Furthermore, Malat1 overturned the inhibitory effect of miR-26b on BMEC autophagy and survival, which involved in promoting the expression of miR-26b target ULK2. Collectively, our study illuminated a new Malat1-miR-26b-ULK2 regulatory axis in which Malat1 served as a competing endogenous RNA by sponging miR-26b and upregulating ULK2 expression, thereby promoting BMEC autophagy and survival under OGD/R condition.
-
Tauopathies are a class of neurodegenerative diseases associated with the pathological aggregation of tau protein in the human brain. Although numerous studies in mouse models of Alzheimer disease (AD) have shown a correlation among diet, beta-amyloid and AD onset, little is known about the impact of diet on Tau. We investigated whether a low fat-protein diet (LFPD) may improve lifespan, cognitive and locomotor activity in P301L-tg mouse model of tauopathy. ⋯ For instance, tg females, but not males, fed with LFPD had a significant increase of body weight and a reduction of P-Tau agglomerates compared to tg fed with standard diet. These changes correlated with a more pronounced improvement of cognition and locomotor activity in females than in male tg fed with LFPD. Altogether, these results suggest a sex dependent neuroprotective effect of LFPD in P301L-tg mice, suggesting that lifestyle intervention strategies may be clinically relevant for delaying the onset of cognitive impairment and dementia, especially in females.
-
The classic hypothesis presents the cerebrospinal fluid (CSF) as the "third circulation," which flows from the brain ventricles through the entire CSF system to the cortical subarachnoid space to eventually be passively absorbed into the superior sagittal sinus through arachnoid granulations. The choroid plexus (CP) represents a key organ in the classic CSF physiology and a powerful biological pump, which exclusively secretes CSF. ⋯ The classic hypothesis cannot provide an explanation for these controversies but the recently formulated Bulat-Klarica-Orešković hypothesis can. According to this hypothesis, CSF production and absorption (CSF exchange) are constant and present everywhere in the CSF system, and although the CSF is partially produced by the CP, it is mainly formed as a consequence of water filtration between the capillaries and interstitial fluid.
-
As the predominant mediator of the delayed rectifier current, KV2.1 is an important regulator of neuronal excitability. KV2.1, however, also plays a well-established role in apoptotic cell death. Apoptogenic stimuli induce syntaxin-dependent trafficking of KV2.1, resulting in an augmented delayed rectifier current that acts as a conduit for K+ efflux required for pro-apoptotic protease/nuclease activation. ⋯ By overexpression of a protein derived from the C-terminus of the cognate channel KV2.2 (KV2.2CT), we induced calcineurin-independent disruption of KV2.1 somato-dendritic clusters in rat cortical neurons, without altering the electrophysiological properties of the channel. We observed that KV2.2CT-expressing neurons are less susceptible to oxidative stress-induced cell death. Critically, expression of KV2.2CT effectively blocked the increased current density of the delayed rectifier current associated with oxidative injury, supporting a vital role of KV2.1-somato-dendritic clusters in apoptogenic increases in KV2.1-mediated currents.