Neuroscience
-
Brain microvascular endothelial cell (BMEC) injury induced by ischemia-reperfusion (I/R) is the initial stage of blood-brain barrier (BBB) disruption, which results in a poor prognosis in ischemic stroke patients. Autophagy has been shown to have protective effects on BMECs against cerebral ischemic insults. However, molecular mechanism of BMEC autophagy during I/R is unclear. ⋯ We further explored the molecular mechanisms by which Malat1 exerted regulatory effects, and found that Malat1 served as an endogenous sponge to downregulate miR-26b expression by binding directly to miR-26b. Furthermore, Malat1 overturned the inhibitory effect of miR-26b on BMEC autophagy and survival, which involved in promoting the expression of miR-26b target ULK2. Collectively, our study illuminated a new Malat1-miR-26b-ULK2 regulatory axis in which Malat1 served as a competing endogenous RNA by sponging miR-26b and upregulating ULK2 expression, thereby promoting BMEC autophagy and survival under OGD/R condition.
-
The effects of endogenous opioid peptide antagonists on panic-related responses are controversial. Using elevated mazes and a prey-versus-predator paradigm, we investigated the involvement of the endogenous opioid peptide-mediated system in the modulation of anxiety- and panic attack-induced responses and innate fear-induced antinociception in the present work. Wistar rats were intraperitoneally pretreated with either physiological saline or naloxone at different doses and were subjected to either the elevated plus- or T-maze test or confronted by Crotalus durissus terrificus. ⋯ After completing all tests, the naloxone-treated groups exhibited less anxiety/fear-induced antinociception than the control group, as measured by the tail-flick test. These findings demonstrate the anxiolytic and panicolytic-like effects of opioid receptor blockade. In addition, the fearlessness behavior displayed by preys treated with naloxone at higher doses enhanced the defensive behavioral responses of venomous snakes.
-
Diabetes mellitus represents a group of metabolic diseases that are characterized by hyperglycemia caused by either lack of insulin production or a reduced ability to respond to insulin. It is estimated that there were 347 million people worldwide who suffered from diabetes in 2008 and incidence is predicted to double by 2050. Neuropathy is the most common complication of long-term diabetes and approximately 30% of these subjects develop chronic neuropathic pain. ⋯ In the current study, we developed chronic and acute insulin-induced neuropathic pain in mice with type 2 insulin-resistant diabetes. Furthermore, we determined that insulin-induced acute allodynia is independent of glycemia levels, can also be induced with Insulin-like Growth Factor 1 (IGF1) and be prevented by inhibition of AKT, providing evidence of an insulin/IGF1 signaling pathway-based mechanism for TIND. This mouse model is useful for the elucidation of mechanisms contributing to TIND and for the testing of new therapeutic approaches to treat TIND.
-
Hot flushes are common in menopause. Norepinephrine (NE), primarily synthesized in the locus coeruleus (LC), plays a major role in central thermoregulation. Furthermore, we previously observed decreased dopamine beta hydroxylase (DβH), a key enzyme in NE synthesis, in LC neurons following ovariectomy. ⋯ E2 enhanced the expression of ERα and ERβ, while ICR only enhanced ERβexpression. Taken together, reduced NE in OVX rats resulted from reduced synthesis and increased degradation and reuptake. E2 and ICR may regulate these processes in different ways through various ERs.
-
As the predominant mediator of the delayed rectifier current, KV2.1 is an important regulator of neuronal excitability. KV2.1, however, also plays a well-established role in apoptotic cell death. Apoptogenic stimuli induce syntaxin-dependent trafficking of KV2.1, resulting in an augmented delayed rectifier current that acts as a conduit for K+ efflux required for pro-apoptotic protease/nuclease activation. ⋯ By overexpression of a protein derived from the C-terminus of the cognate channel KV2.2 (KV2.2CT), we induced calcineurin-independent disruption of KV2.1 somato-dendritic clusters in rat cortical neurons, without altering the electrophysiological properties of the channel. We observed that KV2.2CT-expressing neurons are less susceptible to oxidative stress-induced cell death. Critically, expression of KV2.2CT effectively blocked the increased current density of the delayed rectifier current associated with oxidative injury, supporting a vital role of KV2.1-somato-dendritic clusters in apoptogenic increases in KV2.1-mediated currents.