Neuroscience
-
Chronic pain is associated with autonomic disturbance. However, specific effects of chronic back pain on sympathetic regulation remain unknown. Chronic pain is also associated with structural changes in the anterior cingulate cortex (ACC), which may be linked to sympathetic dysregulation. ⋯ In addition, intensity-dependent decreases in RBF during hind paw stimulation were attenuated by chronic pain at T2 (p's<0.05) and T10 (p's<0.05), but less so at T10 compared with T2 (p's<0.05). These results indicate that chronic back pain alters sympathetic functions through non-segmental mechanisms, possibly by altering descending regulatory pathways from ACC. Yet, segmental somato-sympathetic reflexes may compete with non-segmental processes depending on the back region affected by pain and according to the segmental organization of the sympathetic nervous system.
-
The visual system classifies objects into categories, and distinct populations of neurons within the temporal lobe respond preferentially to objects of a given perceptual category. We can also classify the objects we recognize with the sense of touch, but less is known about the neuronal correlates underlying this cognitive function. To address this question, we performed a multivariate pattern analysis (MVPA) of functional magnetic resonance imagining (fMRI) activity to identify the cortical areas that can be used to decode the category of objects explored with the hand. ⋯ Importantly, we found that categories can also be decoded from the lateral occipital complex (LOC), which is a multimodal region known to be related to the representation of object shape. Furthermore, a hyperalignment analysis showed that activity patterns are similar across subjects. Our results thus indicate that tactile object recognition generates category-specific patterns of activity in a multisensory area known to encode objects, and that these patterns have a similar functional organization across individuals.
-
Anxiety is differentially expressed across a continuum of stressful/fearful intensity, influenced by endocannabinoid systems and receptors. The hippocampus plays important roles in the regulation of affective behavior, emotion, and anxiety, as well as memory. Location of Cb1/Cb2 receptor action could be important in determining emotional valence, because while the dorsal hippocampus is involved in spatial memory and cognition, the ventral hippocampus has projections to the PFC, BNST, amygdala, and HPA axis, and is important for emotional responses to stress. ⋯ Escape behavior is associated with reduced Cb2 expression in the dorsal CA1 region, with freezing and escape latency correlated with mRNA levels. Escaping and submitting animals with access to running wheels had increased Cb2 mRNA in dorsal DG/CA1. These results suggest that the Cb2 receptor system is rapidly induced during anxiogenic social interactions plus fear conditioning or exercise; with responses potentially adaptive for coping mechanisms.
-
Fyn is a non-receptor protein tyrosine kinase that belongs to Src family kinases. Fyn plays a critical role in neuronal migration, but the mechanism remains unclear. ⋯ Moreover, Fyn inhibition increased the length of leading process and decreased the branching number of the migrating cortical neurons. Together, these results indicate that Fyn controls neuronal migration by regulating the cytoskeletal dynamics and multipolar-bipolar transition of newly generated neurons during cortical development.
-
Since Ebbinghaus' classical work on oblivion and saving effects, we know that declarative memories may become at first spontaneously irretrievable and only subsequently completely extinguished. Recently, this time-dependent path toward memory-trace loss has been shown to correlate with different patterns of brain activation. Environmental enrichment (EE) enhances learning and memory and affects system memory consolidation. ⋯ At day 21 SC mice do not show preferential exploration of novel object, irrespective of the retraining, while EE mice are still capable to benefit from retraining, even if they were not able to spontaneously recover the trace. Analysis of c-fos expression 20days after learning shows a different pattern of active brain areas in response to the retraining session in EE and SC mice, with SC mice recruiting the same brain network as naïve SC or EE mice following de novo learning. This suggests that EE promotes formation of longer lasting object recognition memory, allowing a longer time window during which saving is present.