Neuroscience
-
Exposure to chronic stress following stroke has been shown, both clinically and pre-clinically, to impact negatively on the recovery process. While this phenomenon is well established, the specific mechanisms involved have remained largely unexplored. One obvious signaling pathway through which chronic stress may impact on the recovery process is via corticosterone, and its effects on microglial activity and vascular remodeling. ⋯ We also identified that corticosterone administration significantly altered the expression of the key microglial complement receptor, CD11b after stroke. Corticosterone administration did not alter the expression of the vessel basement membrane protein, Collagen IV after stroke. Together, these results suggest that corticosterone is likely to represent only one of the major stress signals responsible for driving the negative impacts of chronic stress on recovery.
-
The immune/inflammatory signaling molecule tumor necrosis factor α (TNFα) is an important mediator of both constitutive and plastic signaling in the brain. In particular, TNFα is implicated in physiological processes, including fever, energy balance, and autonomic function, known to involve the hypothalamic paraventricular nucleus (PVN). Many critical actions of TNFα are transduced by the TNFα type 1 receptor (TNFR1), whose activation has been shown to potently modulate classical neural signaling. ⋯ Dendritic profiles expressing TNFR1 were contacted by axon terminals, which formed non-synaptic appositions, as well as excitatory-type and inhibitory-type synaptic specializations. A smaller population of TNFR1-labeled axon terminals making non-synaptic appositions, and to a lesser extent synaptic contacts, with unlabeled dendrites was also identified. These findings indicate that TNFR1 is structurally positioned to modulate postsynaptic signaling in the PVN, suggesting a mechanism whereby TNFR1 activation contributes to cardiovascular and other autonomic functions.
-
The basal forebrain (BF) controls sleep-wake cycles, attention and reward processing. Compared to cholinergic and GABAergic neurons, BF glutamatergic neurons are less well understood, due to difficulties in identification. Here, we use vesicular glutamate transporter 2 (vGluT2)-tdTomato mice, expressing a red fluorescent protein (tdTomato) in the major group of BF glutamatergic neurons (vGluT2+) to characterize their intrinsic electrical properties and cholinergic modulation. ⋯ In contrast, most vGluT2+ neurons located in lateral BF (magnocellular preoptic area) or dorsal BF did not respond to carbachol. Our results suggest that BF glutamatergic neurons are heterogeneous and have morphological, electrical and pharmacological properties which distinguish them from BF cholinergic and GABAergic neurons. A subset of vGluT2+ neurons, possibly those neurons which project to reward-related areas such as the habenula, are hyperpolarized by cholinergic inputs, which may cause phasic inhibition during reward-related events.
-
TRPV4 ion channels have a broad expression profile and were shown to contribute to enhanced pain sensation in inflammation. Directly blocking TRPV4 might run the risk of interfering with normal physiology, and has prompted to explore the interaction with the scaffolding protein AKAP79, an approach successfully used for TRPV1 channels. HEK293t cells express AKAP79, additional transfection did not sensitize human TRPV4. ⋯ A synthetic peptide, resembling these amino acids and extended by a positive region for transmembrane uptake, was tested. Sensitization of TRPV4 responses could be reduced after exposure to this 771-781::TAT peptide but not by a scrambled control peptide. This validates the concept of targeting the interaction between TRPV4 and AKAP79 and controlling increased TRPV4 activity.
-
Ocular dominance has been extensively studied, often with the goal to understand neuroplasticity, which is a key characteristic within the critical period. Recent work on monocular deprivation, however, demonstrates residual neuroplasticity in the adult visual cortex. After deprivation of patterned inputs by monocular patching, the patched eye becomes more dominant. ⋯ However, binocular rivalry reflects the result of direct interocular competition that strongly weights the contour information transmitted along each monocular pathway. Monocular phase deprivation may not change the weights in the integration (fusion) mechanism much, but alters the balance in the rivalry (competition) mechanism. Our work suggests that ocular dominance plasticity may occur at different stages of visual processing, and that homeostatic compensation also occurs for the lack of phase regularity in natural scenes.