Neuroscience
-
Fyn is a non-receptor protein tyrosine kinase that belongs to Src family kinases. Fyn plays a critical role in neuronal migration, but the mechanism remains unclear. ⋯ Moreover, Fyn inhibition increased the length of leading process and decreased the branching number of the migrating cortical neurons. Together, these results indicate that Fyn controls neuronal migration by regulating the cytoskeletal dynamics and multipolar-bipolar transition of newly generated neurons during cortical development.
-
Huntington's disease (HD) is a hereditary neurodegenerative disorder resulting from N-terminal polyglutamine expansion in the huntingtin protein. A relatively selective and early loss of medium spiny neurons in the striatum is a hallmark of HD neuropathology. Although the exact mechanism of mutant huntingtin-mediated neurodegeneration is unclear, recent evidence suggests that NMDA-receptor-mediated excitotoxicity is involved. ⋯ Our findings demonstrate that deletion of a single allele of p35 in the B6 YAC128 mice results in an upregulation of Akt activity, and increases phosphorylation of mutant huntingtin at Ser421. Longitudinal behavioral analysis showed that this 50% reduction in p35 and p25 levels did not improve accelerating Rotarod performance in these YAC128 mice. However, a complete deletion of p35 normalized the accelerating Rotarod performance relative to their non-transgenic littermates at four months of age.
-
The present experiments investigated the involvement of N-methyl-d-aspartate (NMDA) receptors of the dorsolateral striatum (DLS) in consolidation of extinction in a habit memory task. Adult male Long-Evans rats were initially trained in a food-reinforced response learning version of a plus-maze task and were subsequently given extinction training in which the food was removed from the maze. In experiment 1, immediately after the first day of extinction training, rats received bilateral intra-DLS injections of the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5; 2µg/side) or physiological saline. ⋯ In contrast, post-training intra-DLS infusions of DCS (20µg) enhanced extinction. Intra-DLS administration of AP5 or DCS given two hours after extinction training did not influence extinction of response learning, indicating that immediate post-training administration of AP5 and DCS specifically influenced consolidation of the extinction memory. The present results indicate a critical role for DLS NMDA receptors in modulating extinction of habit memory and may be relevant to developing therapeutic approaches to combat the maladaptive habits observed in human psychopathologies in which DLS-dependent memory has been implicated (e.g. drug addiction and relapse and obsessive compulsive disorder).