Neuroscience
-
Chromatin regulation, in particular ATP-dependent chromatin remodelers, have previously been shown to be important in the regulation of reward-related behaviors in animal models of mental illnesses. Here we demonstrate that BAZ1A, an accessory subunit of the ISWI family of chromatin remodeling complexes, is downregulated in the nucleus accumbens (NAc) of mice exposed repeatedly to cocaine and of cocaine-addicted humans. ⋯ Furthermore, we investigate nucleosome repositioning genome-wide by conducting chromatin immunoprecipitation (ChIP)-sequencing for total H3 in NAc of control mice and after repeated cocaine administration, and find extensive nucleosome occupancy and shift changes across the genome in response to cocaine exposure. These findings implicate BAZ1A in molecular and behavioral plasticity to cocaine and offer new insight into the pathophysiology of cocaine addiction.
-
As maternal treatment with magnesium sulfate (MG) may protect the fetal brain, we sought to assess the inflammation associated neuroprotective potential of MG and its association to interleukin 1β (IL-1β). ⋯ Intrauterine fetal exposure to maternal inflammation and pro-inflammatory cytokines is associated with adverse offspring neurological outcomes. Although its precise mechanism is not elucidated, magnesium sulfate (MG) is commonly used as neuroprotection for white matter brain injuries in preterm fetuses. A proposed mechanism involves the ability of MG to reduce pro-inflammatory cytokine levels. In the current study, we used a rat model of LPS-induced maternal inflammation to investigate the short-term effect of MG on fetal brain IL-1β levels, and its long-term neuroprotective effect on the offspring brain by using MRI. We demonstrated that maternal administration of MG can prevent long-term neonatal brain injury but, since no decrease was observed in fetal brain IL-1β levels, the neuro-protective mechanism of MG is not mediated by inhibition of IL-1β production.
-
To understand the behavioral consequences of intermittent anticipatory stress resulting from threats without accompanying physiological challenges, we developed a semi-naturalistic rodent housing and foraging environment that can include threats that are unpredictable in timing. Behavior is automatically recorded while rats forage for food or water. Over three weeks, the threats have been shown to elicit risk assessment behaviors, increase defensive burying and increase adrenal gland weight. ⋯ There was an increase in COX activity in the hypothalamic premammillary dorsal nucleus (PMD) and lateral septum (LS), whereas a decrease was observed in the periaqueductal gray (PAG) and CA3 region of the hippocampus. There were no significant differences in the anterior cingulate cortex, prefrontal cortex, striatum or motor cortex. The sites with changes in metabolic capacity are candidates for the sites of plasticity that may underlie the behavioral adaptations to intermittent threats.
-
Brain glucose metabolism is altered in sporadic Alzheimer's disease (sAD), whose pathologies are reproduced in rodents by intracerebroventricular (icv) infusion of streptozotocin (STZ) in subdiabetogenic doses. The icv-STZ model also culminates in central cholinergic dysfunctions, which in turn are known to underlie both the sAD cognitive decline, and synaptic plasticity impairments. Considering the cognitive-enhancing potential of chronic nicotine (Nic), we investigated whether it attenuates icv-STZ-induced impairments in recognition memory and synaptic plasticity in a cognition-relevant substrate: the hippocampal CA1-medial prefrontal cortex (mPFC) pathway. ⋯ We found that Nic treatment prevents icv-STZ-induced disruptions in recognition memory and LTP. STZ did not precipitate neuronal death, while Nic alone was associated with higher neuronal density in CA1 when compared to vehicle-injected animals. Through combining behavioral, neurophysiological, and neuropathological observations into the Nic-STZ interplay, our study reinforces that cholinergic treatments are of clinical importance against early-stage Alzheimer's disease and mild cognitive impairments.
-
Comprehensive knowledge of the synaptic plasma membrane (SPM) proteome of a distinct brain region in a defined pathological state would greatly advance the understanding of the underlying biology of synaptic plasticity. The development of innovative approaches for studying the SPM proteome of small brain tissues is highly desired. This study presents a suitable protocol that integrates biotinylation-based affinity capture of cell surface-exposed proteins, isolation of synaptosomes, and biochemical extraction of SPM proteins from biotinylated hippocampal slices. ⋯ Analysis of the interaction network using STRING indicated that the two groups showed a relatively strong functional correlation. Using MCODE analysis, we observed that 65 nonclassical SPM proteins formed 12 highly interconnected clusters with 47 classical SPM proteins, suggesting that they were the more likely SPM candidates. Taken together, the results of this study provide an integrated tool for analyzing the SPM proteome of small brain tissues, as well as a dataset of putative novel SPM proteins to improve the understanding of hippocampal synaptic plasticity.