Neuroscience
-
Dyslexia is an impairment of reading and spelling that affects both children and adults even after many years of schooling. Dyslexic readers have deficits in the integration of auditory and visual inputs but the neural mechanisms of the deficits are still unclear. This fMRI study examined the neural processing of auditorily presented German numbers 0-9 and videos of lip movements of a German native speaker voicing numbers 0-9 in unimodal (auditory or visual) and bimodal (always congruent) conditions in dyslexic readers and their matched fluent readers. ⋯ Importantly, such an enhancement effect was absent in dyslexic readers. Moreover, the auditory network (bilateral superior temporal regions plus medial PFC) was dynamically modulated during audiovisual integration in fluent, but not in dyslexic readers. These results suggest that superior temporal dysfunction may underly poor audiovisual speech integration in readers with dyslexia.
-
Carvacrol is a monoterpene that has been linked to neuroprotection in several animal models of neurodegeneration, including ischemia, epilepsy and traumatic neuronal injury. In this study, we investigated the effects of carvacrol (i.p.) upon the neurodegeneration induced by 6-hydroxy-dopamine unilateral intrastriatal injections in mice. We have also used the cylinder test to assess the behavioral effects of carvacrol in that model of Parkinson's disease, and immunoblots to evaluate the levels of caspase-3 and TRPM7, one of major targets of carvacrol. ⋯ Caspase-3 levels were very high after toxin injections, but carvacrol appeared to reduce them to control levels. Finally, TRPM7, observed by immunoblots, increased after 6-hydroxy-dopamine, suggesting the involvement of this cation channel in the ensuing neurodegenerative process. The present data suggest that carvacrol promotes a marked neuroprotection in the 6-hydroxy-dopamine model of Parkinson's disease, possibly by its non-specific blocking effect upon TRPM7 channels.
-
Nicotinamide phosphoribosyltransferase (NAMPT) is an important neuroprotective factor in cerebral ischemia, and it has been reported that NAMPT inhibitors can aggravate neuronal injury in the acute phase. However, because it is a cytokine, NAMPT participates in many inflammatory diseases in the peripheral system, and its inhibitors have therapeutic effects. Following cerebral ischemia, the peripheral and resident inflammatory and immune cells produce many pro-inflammatory mediators in the ischemic area, which induce neuroinflammation and impair the brain. ⋯ FK866 strongly inhibited these changes and alleviated OGD/R-induced activation of microglia. As such, NAMPT is a crucial determinant of cellular inflammation after cerebral ischemia. NAMPT inhibitors are novel compounds to protect neuronal injury from ischemia via anti-inflammatory effects.
-
The study was undertaken to explore the cell-specific streptozotocin (STZ)-induced mechanistic alterations. STZ-induced rodent model is a well-established experimental model of Alzheimer's disease (AD) and in our previous studies we have established it as an in vitro screening model of AD by employing N2A neuronal cells. Therefore, STZ was selected in the present study to understand the STZ-induced cell-specific alterations by utilizing neuronal N2A and astrocytes C6 cells. ⋯ The cellular communication of astrocytes and neurons was altered as reflected by increased expression of connexin 43 along with DNA fragmentation. STZ-induced apoptotic death was evaluated by elevated expression of caspase-3 and PI/Hoechst staining of cells. In conclusion, study showed that STZ exert alike biochemical alterations, ER stress and cellular apoptosis in both neuronal and astrocyte cells.
-
From a view point of the glutamate excitotoxicity theory, several studies have suggested that abnormal glutamate homeostasis via dysfunction of glial glutamate transporter-1 (GLT-1) may underlie neurodegeneration in amyotrophic lateral sclerosis (ALS). However, the detailed role of GLT-1 in the pathogenies of ALS remains controversial. To assess this issue, here we elucidated structural alterations associated with dysregulation of glutamate homeostasis using SOD1(G93A) mice, a genetic model of familial ALS. ⋯ Interestingly, the coverage of α-motoneurons by VGluT2(+) presynaptic terminals was transiently increased at 9weeks of age, and then gradually decreased towards 21weeks of age. On the other hand, there were no time-dependent alterations in the coverage of α-motoneurons by GABAergic presynaptic terminals. These findings suggest that VGluT2 and GLT-1 may be differentially involved in the pathogenesis of ALS via abnormal glutamate homeostasis at the presymptomatic stage and end stage of disease, respectively.