Neuroscience
-
Dopamine (DA), an important neurotransmitter and neuromodulator, plays important roles in neuronal physiological functions by activating G-protein-coupled DA D1 and/or D2 receptors. Previous studies have demonstrated that D1 receptors are functionally expressed in retinal neurons and glial cells, including ganglion cells. In this study, we explored the effects of D1 receptor activation on retinal ganglion cell (RGC) temporal summation and excitability in rat retinal slices using electrophysiological techniques. ⋯ Additionally, SKF81297 increased the spontaneous firing frequency of RGCs, and caused depolarization of the cells with or without the presence of synaptic receptor blockers. In contrast, SKF81297 did not significantly change the frequency of miniature excitatory postsynaptic currents (mEPSCs) recorded in RGCs. Our results indicate that D1 receptor activation enhances the temporal summation of RGCs mainly by suppressing Kir currents through the cAMP/PKA signaling pathway, thus increasing the excitability of rat RGCs.
-
In this study we tested whether a selective reward could affect the adaptation of saccadic eye movements in monkeys. We induced the adaptation of saccades by displacing the target of a horizontal saccade vertically as the eye moved toward it, thereby creating an apparent vertical dysmetria. The repeated upward target displacement caused the originally horizontal saccade to gradually deviate upward over the course of several hundred trials. ⋯ Saccades in the rewarded direction showed more rapid adaptation of their directions than did saccades in the non-rewarded direction, indicating that the selective reward increased the speed of saccade adaptation. The differences in adaptation speed were reflected in changes in saccade metrics, which were usually more noticeable in the deceleration phases of saccades than in their acceleration phases. Because previous studies have shown that the oculomotor cerebellum is involved with saccade deceleration and also participates in saccade adaptation, it is possible that selective reward could influence cerebellar plasticity.
-
Rapamycin (RAPA), an inhibitor of mammalian target of rapamycin (mTOR), exhibits a high neuroprotective action against neurodegenerative diseases in mouse models. Since neuroinflammation has been shown to be involved in Alzheimer's disease (AD) development and progression, the aim of this study was to examine the anti-inflammatory role of RAPA in AD in vivo and in vitro, and investigate the underlying mechanisms. ⋯ Moreover, RAPA disrupted Aβ25-35-induced nuclear translocation of mTOR and NF-κB. Our findings indicate that RAPA inhibits Aβ25-35- or LPS-induced neuronal inflammation through suppressing mTOR signaling and reducing nuclear import of NF-κB.
-
The olivary pretectal nucleus (OPT) is a midbrain structure that receives reciprocal bilateral retinal projections, is involved in the pupillary light reflex, and connects reciprocally with the intergeniculate leaflet (IGL), a retinorecipient brain region that mediates behavioral responses to light pulses (i.e., masking) in diurnal Nile grass rats. Here, we lesioned the OPT and evaluated behavioral responses in grass rats to various lighting conditions, as well as their anxiety-like responses to light exposure. While control grass rats remained diurnal, grass rats with OPT lesions exhibited a more night-active pattern under 12h:12h light-dark (LD) conditions. ⋯ OPT lesions also abolished the pupillary light reflex, but did not affect anxiety-like behaviors. Finally, in animals with OPT lesions, light did not induce Fos expression in the ventrolateral geniculate nucleus, as it did in controls. Altogether, these results suggest that masking responses to light and darkness are dependent upon nuclei within the subcortical visual shell in grass rats.
-
Neurogenesis constitutively occurs in the olfactory epithelium of mammals, including humans. The fact that new neurons in the adult olfactory epithelium derive from resident neural stem/progenitor cells suggests a potential use for these cells in studies of neural diseases, as well as in neuronal cell replacement therapies. In this regard, some studies have proposed that the human olfactory epithelium is a source of neural stem/progenitor cells for autologous transplantation. ⋯ Additionally, we found that hNS/PCs-OE express the BDNF receptor TrkB, and pharmacological approaches showed that the BDNF-induced (40ng/ml) migration of differentiated hNS/PCs-OE was affected by the compound K252a, which prevents TrkB activation. This observation was accompanied by changes in the number of vinculin adhesion contacts. Our results suggest that hNS/PCs-OE exhibit a migratory response to BDNF, accompanied by the turnover of adhesion contacts.