Neuroscience
-
Neurogenesis constitutively occurs in the olfactory epithelium of mammals, including humans. The fact that new neurons in the adult olfactory epithelium derive from resident neural stem/progenitor cells suggests a potential use for these cells in studies of neural diseases, as well as in neuronal cell replacement therapies. In this regard, some studies have proposed that the human olfactory epithelium is a source of neural stem/progenitor cells for autologous transplantation. ⋯ Additionally, we found that hNS/PCs-OE express the BDNF receptor TrkB, and pharmacological approaches showed that the BDNF-induced (40ng/ml) migration of differentiated hNS/PCs-OE was affected by the compound K252a, which prevents TrkB activation. This observation was accompanied by changes in the number of vinculin adhesion contacts. Our results suggest that hNS/PCs-OE exhibit a migratory response to BDNF, accompanied by the turnover of adhesion contacts.
-
Chitinase activity is increased in Alzheimer's disease (AD). However, the role of chitinase1 in AD is unknown. We investigated the effects of chitinase1 on Alzheimer's pathology and microglia function. ⋯ A higher level of M2 markers (Arg-1, MRC1/CD206) and a lower level of classic M1 markers (TNFa, IL-1β) were obtained in Aβ-pretreated N9 cells with chitinase1, suggesting that chitinase1 polarized the microglia into an anti-AD M2 phenotype. We also detected that chitnase1 could weaken the deposition of Aβ oligomers in the brain of D-galactose/ AlCl3-induced AD rats. In conclusion, Chitinase1 might exert protective effects against AD by polarizing microglia to an M2 phenotype and resisting Aβ oligomer deposition.
-
Simvastatin ameliorates memory impairment and neurotoxicity in streptozotocin-induced diabetic mice.
Diabetes comes with an additional burden of moderate to severe hyperlipidemia, but little is known about the effects of lipid-lowering therapy on diabetic complications such as diabetes-associated cognitive decline. Herein we investigated the effects of statins on memory impairment and neurotoxicity in streptozotocin-induced diabetic mice. Our data indicated that oral administration of simvastatin at 10 or 20mg/kg for 4weeks significantly ameliorated diabetes-associated memory impairment reflected by performance better in the Morris water maze and Y-maze tests. ⋯ Moreover, simvastatin pronouncedly attenuated amyloidogenesis by decreasing amyloid-β, amyloid precursor protein (APP) and beta-site APP cleaving enzyme-1. As expected, treated with simvastatin, the diabetic mice exhibited significant improvement of hyperlipidemia rather than hyperglycemia. Our findings disclosed novel therapeutic potential of simvastatin for the diabetes-associated cognitive impairment.
-
The somatosensory information from the orofacial region, including the periodontal ligament (PDL), is processed in a manner that differs from that used for other body somatosensory information in the related cortices. It was reported that electrical stimulation to rat PDL elicited activation of the insular oral region (IOR) and the primary (S1) and secondary (S2) somatosensory cortices. However, the physiological relationship between S1 and S2/IOR is not well understood. ⋯ An injection of FluoroGold™ (FG) to the initial response area in S1 or the S2/IOR showed that FG-positive cells were scattered in the non-injected cortical counterpart. This morphological result demonstrated the presence of a bi-directional intracortical connection between the initial response areas in S1 and the S2/IOR. These findings suggest the presence of a mutual connection between S1 and the S2/IOR as an intracortical signal processing network for orofacial nociception.
-
Functional magnetic resonance imaging (fMRI) is based on neurovascular coupling, which allows inferring neuronal activity from hemodynamic changes. Spinal fMRI has been used to examine pain processes, although spinal neurovascular coupling has never been investigated. In addition, fluctuations in mean arterial pressure (MAP) occur during nociceptive stimulation and this may affect neurovascular coupling. ⋯ This indicates that spinal hemodynamic changes reflect neuronal activity even when large fluctuations in MAP occur. This contrasts with results from previous studies on cerebral neurovascular coupling and suggests that spinal autoregulation might allow better adaptation to sudden MAP changes than cerebral autoregulation. Although assessment of the coupling between spinal neuronal activity and BOLD signal remains to be investigated, this study supports the use of spinal fMRI, based on the tight coupling between SCBF and LFP.