Neuroscience
-
Dopamine (DA), an important neurotransmitter and neuromodulator, plays important roles in neuronal physiological functions by activating G-protein-coupled DA D1 and/or D2 receptors. Previous studies have demonstrated that D1 receptors are functionally expressed in retinal neurons and glial cells, including ganglion cells. In this study, we explored the effects of D1 receptor activation on retinal ganglion cell (RGC) temporal summation and excitability in rat retinal slices using electrophysiological techniques. ⋯ Additionally, SKF81297 increased the spontaneous firing frequency of RGCs, and caused depolarization of the cells with or without the presence of synaptic receptor blockers. In contrast, SKF81297 did not significantly change the frequency of miniature excitatory postsynaptic currents (mEPSCs) recorded in RGCs. Our results indicate that D1 receptor activation enhances the temporal summation of RGCs mainly by suppressing Kir currents through the cAMP/PKA signaling pathway, thus increasing the excitability of rat RGCs.
-
Perineuronal nets (PNNs) are structures of extracellular matrix molecules surrounding the cell bodies and proximal dendrites of certain neurons. While PNNs are present throughout the mouse cerebral cortex, recent studies have shown that the components differ among cortical sub-regions and layers, suggesting region-specific functions. Parvalbumin-expressing interneurons (PV neurons) may be important regulators of cortical plasticity during the early "critical period" that is sensitive to sensory input. ⋯ These WFA(+) PNNs changed from granular-like to reticular-like structures during normal cortical development, while this transition was delayed by sensory deprivation. This study indicates that the formation of reticular-like WFA(+) PNNs is dependent on sensory experience in the mouse somatosensory cortex. We suggest that Cat-315(+) molecules and WFA expression in PNNs are involved in the early critical period of input-dependent cortical plasticity.
-
Chitinase activity is increased in Alzheimer's disease (AD). However, the role of chitinase1 in AD is unknown. We investigated the effects of chitinase1 on Alzheimer's pathology and microglia function. ⋯ A higher level of M2 markers (Arg-1, MRC1/CD206) and a lower level of classic M1 markers (TNFa, IL-1β) were obtained in Aβ-pretreated N9 cells with chitinase1, suggesting that chitinase1 polarized the microglia into an anti-AD M2 phenotype. We also detected that chitnase1 could weaken the deposition of Aβ oligomers in the brain of D-galactose/ AlCl3-induced AD rats. In conclusion, Chitinase1 might exert protective effects against AD by polarizing microglia to an M2 phenotype and resisting Aβ oligomer deposition.
-
Neurogenesis constitutively occurs in the olfactory epithelium of mammals, including humans. The fact that new neurons in the adult olfactory epithelium derive from resident neural stem/progenitor cells suggests a potential use for these cells in studies of neural diseases, as well as in neuronal cell replacement therapies. In this regard, some studies have proposed that the human olfactory epithelium is a source of neural stem/progenitor cells for autologous transplantation. ⋯ Additionally, we found that hNS/PCs-OE express the BDNF receptor TrkB, and pharmacological approaches showed that the BDNF-induced (40ng/ml) migration of differentiated hNS/PCs-OE was affected by the compound K252a, which prevents TrkB activation. This observation was accompanied by changes in the number of vinculin adhesion contacts. Our results suggest that hNS/PCs-OE exhibit a migratory response to BDNF, accompanied by the turnover of adhesion contacts.
-
Neuroinflammation is proposed to be an important component in the development of several central nervous system (CNS) disorders including depression, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. However, exactly how neuroinflammation leads to, or contributes to, these central disorders is unclear. The objective of the study was to examine and compare the expression of mRNAs for interleukin-6 (IL-6), IL-7, IL-10 and the receptors for IL-6 (IL-6R) and IL-7 (IL-7R) using in situ hybridization in discrete brain regions and in the spleen after multiple injections of 3mg/kg lipopolysaccharide (LPS), a model of neuroinflammation. ⋯ These studies indicate that LPS-induced neuroinflammation has substantial but variable effects on the regional and cellular patterns of CNS IL-6, IL-7 and IL-10, and for IL-6R and IL-7R mRNA expression. It is apparent that administration of LPS can affect non-neuronal and neuronal cells in the brain. Further research is required to determine how CNS inflammatory changes associated with IL-6, IL-10 and IL-6R could in turn contribute to the development of CNS neurological disorders.