Neuroscience
-
Neurogenesis constitutively occurs in the olfactory epithelium of mammals, including humans. The fact that new neurons in the adult olfactory epithelium derive from resident neural stem/progenitor cells suggests a potential use for these cells in studies of neural diseases, as well as in neuronal cell replacement therapies. In this regard, some studies have proposed that the human olfactory epithelium is a source of neural stem/progenitor cells for autologous transplantation. ⋯ Additionally, we found that hNS/PCs-OE express the BDNF receptor TrkB, and pharmacological approaches showed that the BDNF-induced (40ng/ml) migration of differentiated hNS/PCs-OE was affected by the compound K252a, which prevents TrkB activation. This observation was accompanied by changes in the number of vinculin adhesion contacts. Our results suggest that hNS/PCs-OE exhibit a migratory response to BDNF, accompanied by the turnover of adhesion contacts.
-
Neuroinflammation is proposed to be an important component in the development of several central nervous system (CNS) disorders including depression, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. However, exactly how neuroinflammation leads to, or contributes to, these central disorders is unclear. The objective of the study was to examine and compare the expression of mRNAs for interleukin-6 (IL-6), IL-7, IL-10 and the receptors for IL-6 (IL-6R) and IL-7 (IL-7R) using in situ hybridization in discrete brain regions and in the spleen after multiple injections of 3mg/kg lipopolysaccharide (LPS), a model of neuroinflammation. ⋯ These studies indicate that LPS-induced neuroinflammation has substantial but variable effects on the regional and cellular patterns of CNS IL-6, IL-7 and IL-10, and for IL-6R and IL-7R mRNA expression. It is apparent that administration of LPS can affect non-neuronal and neuronal cells in the brain. Further research is required to determine how CNS inflammatory changes associated with IL-6, IL-10 and IL-6R could in turn contribute to the development of CNS neurological disorders.
-
Chronic psychosocial stress modulates brain antioxidant systems and causes neuroinflammation that plays a role in the pathophysiology of depression. Although the antidepressant fluoxetine (FLX) represents the first-line treatment for depression and the atypical antipsychotic clozapine (CLZ) is considered as a second-line treatment for psychotic disorders, the downstream mechanisms of action of these treatments, beyond serotonergic or dopaminergic signaling, remain elusive. We examined behavioral changes, glutathione (GSH)-dependent defense and levels of proinflammatory mediators in the prefrontal cortex (PFC) of adult male Wistar rats exposed to 21days of chronic social isolation (CSIS). ⋯ In conclusion, prefrontal cortical GSH depletion and the proinflammatory response underlying depressive- and anxiety-like states induced by CSIS were prevented by FLX. The protective effect of CLZ, which was equally effective as FLX on the behavioral level, was limited to proinflammatory components. Hence, different mechanisms underlie the protective effects of these two drugs in CSIS rats.
-
Microglia are critical for developmental pruning and immune response to injury, and are implicated in facilitating neural plasticity. The rodent gustatory system is highly plastic, particularly during development, and outcomes following nerve injury are more severe in developing animals. The mechanisms underlying developmental plasticity in the taste system are largely unknown, making microglia an attractive candidate. ⋯ Our results show that microglia density is highest during times of normal gustatory afferent pruning. Furthermore, the quantity of the microglia response is higher in the mature system than in neonates. These findings link increased microglia presence with instances of normal developmental and injury induced alterations in the rNTS.
-
In this study we tested whether a selective reward could affect the adaptation of saccadic eye movements in monkeys. We induced the adaptation of saccades by displacing the target of a horizontal saccade vertically as the eye moved toward it, thereby creating an apparent vertical dysmetria. The repeated upward target displacement caused the originally horizontal saccade to gradually deviate upward over the course of several hundred trials. ⋯ Saccades in the rewarded direction showed more rapid adaptation of their directions than did saccades in the non-rewarded direction, indicating that the selective reward increased the speed of saccade adaptation. The differences in adaptation speed were reflected in changes in saccade metrics, which were usually more noticeable in the deceleration phases of saccades than in their acceleration phases. Because previous studies have shown that the oculomotor cerebellum is involved with saccade deceleration and also participates in saccade adaptation, it is possible that selective reward could influence cerebellar plasticity.