Neuroscience
-
The α1-adrenergic receptors (α1ARs) have been implicated in numerous actions of the brain, including attention and wakefulness. Additionally, they have been identified as contributing to disorders of the brain, such as drug addiction, and recent work has shown a role of these receptors in relapse to psychostimulants. While some functionality is known, the actual subcellular localization of the subtypes of the α1ARs remains to be elucidated. ⋯ In accordance with other studies of the striatum, the D1R was found mainly in dendrites and spines; therefore, colocalization of the D1R with the α1bAR was rare postsynaptically. However, in the NAc shell, when the receptors were co-expressed in the same neuronal elements there was a trend for both receptors to be found on the plasma membrane, as opposed to the intracellular compartment. This study provides valuable anatomical information about the α1bAR and its relationship to the D1R and the regulation of DA and norepinephrine (NE) neurotransmission in the brain which have been examined previously.
-
Autism Spectrum Disorder (ASD) is characterized by impairments in social interaction, social communication, and repetitive and stereotyped behaviors. Recent work has begun to explore gene × environmental interactions in the etiology of ASD. We previously reported that prenatal stress exposure in stress-susceptible heterozygous serotonin transporter (SERT) KO pregnant dams in a mouse model resulted in autism-like behavior in the offspring (SERT/S mice). ⋯ The dopamine (DA) content in the striatum was significantly increased in the SERT/S mice compared with wild-type (WT) mice, whereas no difference was observed with noradrenaline and serotonin content. Moreover, DA content in the striatum was significantly reduced in the SERT/S mice with the DHA-rich diet provided continuously from breeding. The results indicate that autism-associated behaviors and changes in the dopaminergic system in this setting can be mitigated with DHA supplementation.
-
To better understand the effects of a diet high in fat, sugar, and sodium on cerebrovascular function, Sprague Dawley rats were chronically exposed to a Cafeteria diet. Resting cerebral perfusion and cerebrovascular reactivity was quantified using continuous arterial spin labeling (CASL) magnetic resonance imaging (MRI). In addition, structural changes to the cerebrovasculature and susceptibility to ischemic lesion were examined. ⋯ Also, the extent of tissue damage induced by endothelin-1 injection into sensorimotor cortex was not affected by the Cafeteria diet. These results demonstrate that short-term consumption of an ultra-processed diet reduces cerebrovascular reactivity. This effect persists after dietary normalization despite recovery of peripheral symptomatology.
-
DEK, a chromatin-remodeling gene expressed in most human tissues, is known for its role in cancer biology and autoimmune diseases. DEK depletion in vitro reduces cellular proliferation, induces DNA damage subsequently leading to apoptosis, and down-regulates canonical Wnt/β-catenin signaling, a molecular pathway essential for learning and memory. Despite a recognized role in cancer (non-neuronal) cells, DEK expression and function is not well characterized in the central nervous system. ⋯ Of note, compared to males, females had significantly higher DEK immunoreactivity in the CA1, indicating a sex difference in this region. DEK was co-expressed with neuronal and microglial markers in the CA1 and DG, whereas only a small percentage of DEK cells were in apposition to astrocytes in these areas. Given the reported inverse cellular and molecular profiles (e.g., cell survival, Wnt pathway) between cancer and Alzheimer's disease, these findings suggest a potentially important role of DEK in cognition.
-
The effect of cerebellar transcranial direct current stimulation (tDCS) on motor performance remains controversial. Some studies suggest that the effect of tDCS depends upon task-difficulty and individual level of task performance. Here, we investigated whether the effect of cerebellar tDCS on the motor performance depends upon the individual's level of performance. ⋯ This resulted in a significant performance improvement only for the sub-group of participants with lower performance levels as compared to that with sham-tDCS (p < 0.05). These findings suggest that the facilitation effect of cerebellar cathodal tDCS on motor skill learning of complex whole-body movements depends on the level of an individual's task performance. Thus, cerebellar tDCS would facilitate learning of a complex motor skill task only in a subset of individuals.