Neuroscience
-
Major depressive disorder (MDD) is a prevalent and serious mental disorder with high rates of suicide and disability. However, the underlying pathogenesis of MDD is complicated and remains largely unclear. An integrated analysis of multiple types of omics data may improve comprehensive understanding of the entire molecular mechanism of MDD. ⋯ Differential analysis identified 30 metabolites and 170 proteins between the two groups. The integrated analyses revealed four major changes in the hippocampus of CUMS rats: (1) impairment in amino acid metabolism and protein synthesis/degradation; (2) dysregulation of glutamate and glycine metabolism and their transport/catabolism related proteins; (3) disturbances in fatty acid and glycerophospholipid metabolism accompanied by alterations in the corresponding metabolic enzymes; (4) abnormal expression of synapse-associated proteins. These results provide further important insights into the pathophysiology of depression and may help identify potential targets for antidepressant drugs.
-
Autism Spectrum Disorder (ASD) is characterized by impairments in social interaction, social communication, and repetitive and stereotyped behaviors. Recent work has begun to explore gene × environmental interactions in the etiology of ASD. We previously reported that prenatal stress exposure in stress-susceptible heterozygous serotonin transporter (SERT) KO pregnant dams in a mouse model resulted in autism-like behavior in the offspring (SERT/S mice). ⋯ The dopamine (DA) content in the striatum was significantly increased in the SERT/S mice compared with wild-type (WT) mice, whereas no difference was observed with noradrenaline and serotonin content. Moreover, DA content in the striatum was significantly reduced in the SERT/S mice with the DHA-rich diet provided continuously from breeding. The results indicate that autism-associated behaviors and changes in the dopaminergic system in this setting can be mitigated with DHA supplementation.
-
To better understand the effects of a diet high in fat, sugar, and sodium on cerebrovascular function, Sprague Dawley rats were chronically exposed to a Cafeteria diet. Resting cerebral perfusion and cerebrovascular reactivity was quantified using continuous arterial spin labeling (CASL) magnetic resonance imaging (MRI). In addition, structural changes to the cerebrovasculature and susceptibility to ischemic lesion were examined. ⋯ Also, the extent of tissue damage induced by endothelin-1 injection into sensorimotor cortex was not affected by the Cafeteria diet. These results demonstrate that short-term consumption of an ultra-processed diet reduces cerebrovascular reactivity. This effect persists after dietary normalization despite recovery of peripheral symptomatology.
-
The progress of axonal degeneration (AxD) following injury or insult impacts both recovery from axonal transection and protection of axons from diverse insults, or axonopathy. Here we provide evidence that increases in capase-6 (Casp6) expression and action contribute to the progression of AxD. The expression of Casp6 protein and mRNA in distal branches of sensory axons undergoing AxD was confirmed. ⋯ Following transection, morphological features of AxD were evident in both wild type and Casp6-/- mice but the latter had evidence of slowed progression. Taken together, our findings suggest a subtle but dispensable enabling role of local Casp6 expression in axons undergoing AxD. Serial analysis of cutaneous ear pinna axons in live mice provides a useful and novel model of axonal integrity.
-
Magnetic stimulation is widely used in neuroscience research and clinical treatment. Despite recent progress in understanding the neural modulation mechanism of conventional magnetic stimulation methods, the physiological mechanism at the cortical microcircuit level is not well understood due to the poor stimulation focality and large electric artifact in the recording. To overcome these issues, we used a sub-millimeter-sized coil (micro-coil) to stimulate the mouse auditory cortex in vivo. ⋯ The activated cortical area was dependent on the coil orientation, providing useful information on the effective position of the coil relative to the brain surface for modulating cortical circuitry activity. In addition, numerical calculation of the induced electric field in the brain revealed that the inhomogeneity of the horizontal electric field to the surface is critical for micro-coil-induced cortical activation. The results suggest that our micro-coil technique has the potential to be used as a chronic, less-invasive and highly focal neuro-stimulator, and is useful for investigating microcircuit responses to magnetic stimulation for clinical treatment.