Neuroscience
-
Stressful and emotionally arousing experiences are remembered, and previous reports show that repeated exposure to stressful condition enhances emotional learning. However, the usefulness of the repeated exposure depends on the intensity and duration. Although repeated training as a strategy to improve memory performance is receiving increased attention from researchers, repeated training may induce stressful effects that have not yet been considered. ⋯ Following extensive exposure, a negative impact on emotional memory was observed compared with the limited exposure group. A lack of any further improvement in memory function following extensive training exposure was supported by increased corticosterone levels, decreased 5-hydroxytryptamine (5-HT) levels and abnormal oxidative stress levels, which may induce negative effects on memory consolidation. It is suggested that limited exposure to repetitive learning trials is more useful for studying improvement in emotional memory, whereas extensive exposure may produce chronic stress-like condition that can be detrimental and responsible for compromised memory performance.
-
DYT1 dystonia is a neurological disease caused by dominant mutations in the TOR1A gene, encoding for the endoplasmic reticulum (ER)-resident protein torsinA. Recent reports linked expression of the DYT1-causing protein with dysregulation of eIF2α, a key component of the cellular response to ER stress known as the unfolded protein response (UPR). However, the response of the DYT1 mammalian brain to acute ER stress inducers has not been evaluated in vivo. ⋯ Finally, an unbiased RNA-Seq-based transcriptomic analysis of embryonic brain tissue in heterozygous and homozygous DYT1 knockin mice confirmed the presence of eIF2α dysregulation in the DYT1 brain. In sum, these findings support previous reports linking torsinA function, eIF2α signaling and the neuronal response to ER stress in vivo. Furthermore, we describe novel protocols to investigate neuronal ER stress in cultured neurons and in vivo.
-
Several isoforms of integrin subunits are expressed in Schwann cells and mediate Schwann cell interactions with axons. Here, we identify α6 and β1 integrins as heterodimeric proteins expressed in Schwann cells and define their functions in axonal regeneration. α6 and β1 integrins are induced in Schwann cells in the sciatic nerve after a crush injury, and the blocking of integrin activity by siRNA expression and by treatment with anti-integrin antibodies attenuates Schwann cell contact with cultured neurons and decreases neurite outgrowth. After nerve transection, the levels of α6 and β1 integrins in the distal nerve stump are lower than those in the corresponding nerve area after a crush injury. ⋯ When the transected nerves are reconnected after a delay of 1 to 2 weeks, the induced levels of α6 and β1 integrins in the reconnected distal nerves are significantly reduced compared to those in the nerves after a crush injury. These changes correlate with retarded axonal regeneration in animals that have experienced nerve transections and delayed coaptation, which implies an attenuated Schwann cell capacity to support axonal regeneration due to delayed Schwann cell contact with axons. The present data suggest that α6 and β1 integrins induced in Schwann cells after nerve injury may play a role in mediating Schwann cell interactions with axons and promote axonal regeneration.
-
The δ subunit-containing γ-Aminobutyric acid type A receptors (δ-GABAARs) are located at extrasynaptic sites and persistently active in the control of neuronal excitability. Here we recorded primary afferent C fiber-evoked field potentials in the superficial dorsal horn of rat spinal cords in vivo and investigated the possible influence of δ-GABAARs activities on nociceptive synaptic transmission. We found that δ-GABAARs-preferring agonist 4,5,6,7-tetrahydroisoxazolol [4,5-c] pyridine-3-ol (THIP), when topically applied onto spinal cord dorsum, inhibited the basal synaptic responses in a dose-dependent manner. ⋯ Biochemical analysis demonstrated that δ-GABAARs activation by THIP decreased the synaptic expression and phosphorylation of AMPA receptor GluA1 subunit in formalin-injected rats, and meanwhile, increased synaptic GluA2 content, allowing the switch of GluA2-lacking AMPA receptors to GluA2-containing ones at synapses. THIP also suppressed the synaptic accumulation and phosphorylation of NMDA receptor GluN1 subunit in formalin-injected rats. Our data suggested that enhanced δ-GABAARs activities blunted the initiation and maintenance of spinal LTP, which correlated with the amelioration of central sensitization of nociceptive behaviors.
-
Macrophages are implicated in the pathological processes and functional recovery of spinal cord injury (SCI). Macrophage activation following inflammation depends on networks of interferons and cytokines. Recent evidence indicate that IL-7 signaling can influence the release of proinflammatory factors, however, its roles in modulating macrophage phenotype and function and whether it could affect the functional recovery of SCI are poorly understood. ⋯ Furthermore, IL-7 displays strong chemotactic property for macrophages and A7R34 treatment inhibits their infiltration into injured sites in vivo. More importantly, the A7R34 treatment promotes functional recovery after SCI, indicating its therapeutic effects on spinal cord repair. Hence, our study proposes a new therapeutic strategy to treat SCI by blocking IL-7 signaling.