Neuroscience
-
Adult mammalian peripheral neurons have an intrinsic regrowth capacity in response to axonal injury. The induction of calcium ion (Ca2+) oscillations at an injured site is critical for the regulation of regenerative responses. In polarized neurons, distal axonal segments contain a well-developed endoplasmic reticulum (ER) network that is responsible for Ca2+ homeostasis. ⋯ Inhibition of axonal UPR signaling led to fragmentation of the axonal ER and disrupted growth cone formation, suggesting that activation of axonal UPR branches following axonal injury promotes regeneration via regulation of ER reconstruction and formation of growth cones. Our studies revealed that local activation of axonal UPR signaling by injury-induced Ca2+ release from the ER is critical for regeneration. These findings provide a new concept for the link between injury-induced signaling at a distant location and regulation of organelle and cytoskeletal formation in the orchestration of axonal regeneration.
-
Cell-cell communication plays a central role in the guidance of migrating neuronal precursor cells during the development of the cerebral cortex. Endocannabinoids (eCBs) have previously been shown to be one of the central factors regulating neuronal migration. In this study the effects of eCBs on different parameters, expected to affect embryonic cortical neuronal motility have been analyzed in neurosphere-derived neuroblasts using time-lapse microscopy. ⋯ Similar changes occur interfering with the function of the metabotropic glutamate receptor 5 (mGluR5) or its transducer canonical transient receptor potential channel 3 (TRPC3) or the neuregulin receptor ErbB4. Blocking of 2-AG production reverses these effects. The data suggest that eCB-regulated neuronal motility is controlled by mGluR5/TRPC3 activity possibly via NRG/ErbB4 signaling.
-
Chronic Mountain Sickness (CMS) occurs in high-altitude residents with major neurological symptoms such as migraine headaches, dizziness and cognitive deficits. Recent work demonstrated that highlanders have increased intracellular pH (pHi) in their brain cells, perhaps for the sake of adaptation to hypoxemia and help to facilitate glycolysis, DNA synthesis, and cell cycle progression. Since there are well adapted (non-CMS) and maladapted (CMS) high-altitude dwellers, it is not clear whether pHi is differently regulated in these two high-altitude populations. ⋯ In addition, the acid extrusion following an acid loading is faster and the pHi dependence of H+ flux rate becomes steeper in CMS astrocytes. Furthermore, the Na+ dependency of ss pHi is stronger in CMS astrocytes and the Na+/H+ exchanger (NHE) inhibitors blunted the acid extrusion in both CMS and non-CMS astrocytes. We conclude that (a) NHE contributes to the ss pHi stabilization and mediates active acid extrusion during the cytosolic acidosis in highlanders; (b) acid extrusion becomes less pHi sensitive in non-CMS (versus CMS) astrocytes which may prevent NHE from over-activated in the hypoxia-induced intracellular acidosis and render the non-CMS astrocytes more resistant to hypoxemia challenges.
-
Selective vulnerability or resilience to mood disorders is related to individual differences or personality. In the present study forced swim test (FST) was used as a tool for division of male rats according to their immobility behavior. The animals were subjected to a chronic unpredictable mild stress (CUS). ⋯ The levels of BDNF ExIX and ExI as well TrkB mRNAs were higher in the hippocampus of HI rats as compared to LI rats. In general, the response of hippocampus to CUS was much more expressed as compared to frontal cortex. Thus, initially different stress coping strategies of rats in the FST (HI, LI) were associated with the development of similar behavioral phenotypes after chronic unpredictable stress; however, these phenotypes were associated with different alterations in neurotrophin systems of the brain.
-
The ventral tegmental area (VTA) neuronal population consists of dopaminergic (DAergic) and non-DAergic neurons (mainly GABAergic), the activity of which is intertwined with VTA behavioral functions. Both DAergic and GABAergic neurons in the VTA have been shown to express adrenergic receptors (ARs) and respond to AR stimulation. The aim of the present study was to demonstrate the effects of selective AR agonists on DAergic and non-DAergic neuronal activity in the central and lateral parts of the VTA using in vivo electrophysiological recording combined with microiontophoretic drug application in anaesthetized rats. ⋯ Furthermore, we show that α1-AR activation has contrasting effects on putative DAergic and non-DAergic neurons. We hypothesize that the phenylephrine-induced inhibition of putative DAergic neurons results from activation of GABAergic terminals present at the site of drug application. Such a mechanism is further supported by the observed α1-AR-induced excitation of putative GABAergic VTA neurons.