Neuroscience
-
Vasogenic cerebral edema formation after blood-brain barrier (BBB) damage aggravates the devastating consequences of intracerebral hemorrhage (ICH). The present study aims to probe into a therapeutic method on BBB preservation after ICH with a glycogen synthase kinase-3β (GSK-3β) inhibitor, lithium. Intrastriatal infusion of semicoagulated autologous whole blood or sham surgery was performed on male Sprague-Dawley (SD) rats (n = 208). ⋯ Expressions of Akt, GSK-3β, β-catenin, claudin-1 and claudin-3 were evaluated via Western blots. Our results showed lithium alone posttreatment activated GSK-3β, therefore increasing active β-catenin and claudin-1 and claudin-3 expressions, which were accompanied with improved BBB integrity and ameliorated sensorimotor deficits and brain edema in ICH animals. We concluded that lithium alone reduced BBB damage after ICH, likely through regulating Akt/GSK-3β pathway and stabilizing β-catenin.
-
Adenosine is a powerful modulator of skeletal neuromuscular transmission, operating via inhibitory or facilitatory purinergic-type P1 receptors. To date, studies have been focused mainly on the effect of adenosine on presynaptic P1 receptors controlling transmitter release. In this study, using two-microelectrode voltage-clamp and single-channel patch-clamp recording techniques, we have explored potential postsynaptic targets of adenosine and their modulatory effect on nicotinic acetylcholine receptor (nAChR)-mediated synaptic responses in adult mouse skeletal muscle fibers in vitro. ⋯ Using specific ligands for the P1 receptor subtypes, we found that the low-affinity P1 receptor subtype A2B was responsible for mediating the effects of adenosine on the nAChR channel openings. Our data suggest that at the adult mammalian NMJ, adenosine acts not only presynaptically to modulate acetylcholine transmitter release, but also at the postsynaptic level, to enhance the activity of nAChRs. Our findings open a new scenario in understanding of purinergic regulation of nAChR activity at the mammalian endplate region.
-
Corticotropin-releasing factor receptors (CRFR1) contribute to stress-induced adaptations in hippocampal structure and function that can affect learning and memory processes. Our prior studies showed that female rats with elevated estrogens compared to males have more plasmalemmal CRFR1 in CA1 pyramidal cells, suggesting a greater sensitivity to stress. Here, we examined the distribution of hippocampal CRFR1 following chronic immobilization stress (CIS) in female and male rats using immuno-electron microscopy. ⋯ Moreover, after CIS, which leads to even greater sex differences in CRFR1 by trafficking it to different subcellular compartments, CRF could enhance activation of CA1 pyramidal cells in males but to a lesser extent than either unstressed or CIS females. Additionally, CA3 pyramidal cells and inhibitory interneurons in males have heightened sensitivity to CRF, regardless of stress state. These sex differences in CRFR1 distribution and trafficking in the hippocampus may contribute to reported sex differences in hippocampus-dependent learning processes in baseline conditions and following chronic stress.
-
High-mobility group box-1 (HMGB1) acts as a proinflammatory molecule once released into the extracellular space and inhibition of HMGB1 signaling has been reported be neuroprotective in neurodegenerative diseases. Besides, chronic cerebral hypoperfusion (CCH) causes cognitive impairment in neurodegenerative diseases. Here we tested the protective role of HMGB1 inhibition using anti-HMGB1 neutralizing antibody (Ab) against CCH in rats after bilateral common carotid artery occlusion (2VO). 169 male Sprague-Dawley rats underwent 2VO or sham operation. ⋯ Besides, anti-HMGB1 Ab preserved BBB integrity and reduced glial activation, in association with the related changes in oxidative stress (increased activities of superoxide dismutase (SOD) and catalase (CAT), and decreased malondialdehyde (MDA) production) and inflammatory cytokines (increased gene expression of IL-1β, IL-6 and TNF) at 3 d. Additionally, anti-HMGB1 neutralizing Ab improved hippocampal CA1 neuronal survival and behavioral outcomes in the chronic phase (4 w and 12 w). Taken together, these findings suggest that HMGB1 neutralization suppresses hippocampal inflammatory responses and oxidative stress in the acute phase, and these changes exert long-lasting beneficial effects in the chronic phase of CCH.
-
Developmental exposure to ethanol leads to a constellation of cognitive and behavioral abnormalities known as Fetal Alcohol Spectrum Disorders (FASDs). Many cell types throughout the central nervous system are negatively impacted by gestational alcohol exposure, including inhibitory, GABAergic interneurons. Little evidence exists, however, describing the long-term impact of fetal alcohol exposure on survival of interneurons within the hippocampal formation, which is critical for learning and memory processes that are impaired in individuals with FASDs. ⋯ In adulthood, interneuron populations were reduced in every hippocampal region examined. Moreover, we found that a single exposure to ethanol at P7 caused robust activation of apoptotic neurodegeneration of interneurons in the hilus, granule cell layer, CA1 and CA3 regions of the hippocampus. These studies demonstrate that developmental ethanol exposure has a long-term impact on hippocampal interneuron survivability, and may provide a mechanism partially explaining deficits in hippocampal function and hippocampus-dependent behaviors in those afflicted with FASDs.