Neuroscience
-
The purpose of the study was to investigate sensorimotor rhythm desynchronization during the performance of a motor execution and motor imagery task of different complexity, while varying motor musical expertise of subjects. We compared EEG patterns of professional pianists and non-pianists, who either executed or imagined finger tapping movements of different complexity. Results show that the power in alpha (8-12 Hz) and beta (13-30 Hz) rhythms decreases with the complexity of both performed and imagined movements. ⋯ There was no such relationship among non-pianists. In the imagery task, there was a tendency toward an interaction of motor expertise and low and high alpha rhythm components. In the beta band, there was an interaction of frequency and area of the skull occurring in the movement execution condition - high and low beta rhythm components had different topography.
-
Sphingosine-1-phosphate (S1P) is a sphingolipid molecule produced by the action of sphingosine kinases (SphK) on sphingosine. It possesses various intracellular functions through its interactions with intracellular proteins or via its action on five G-protein-coupled cell membrane receptors. Following transient global cerebral ischemia (tGCI), only the CA1 subregion of the hippocampus undergoes apoptosis. ⋯ Together, these effects explain the variable levels of S1P in the CA1 and CA3 areas and indicate that S1P levels play a role in the preferential resistance of the CA3 subregion to tGCI-induced ischemia. FTY720 did not improve neuronal survival in the CA1 subregion, indicating that these effects were due to intracellular S1P accumulation. In conclusion, the findings suggest that intracellular S1P levels affect neuronal cell fate following tGCI.
-
A-kinase-anchoring proteins, AKAPs, are scaffolding proteins that associate with kinases and phosphatases, and direct them to a specific submembrane site to coordinate signaling events. AKAP150, a rodent ortholog of human AKAP79, has been extensively studied in neurons, but very little is known about the localization and function of AKAP150 in astrocytes, the major cell type in brain. Thus, in this study, we assessed the localization of AKAP150 in astrocytes and elucidated its role during physiological and ischemic conditions. ⋯ Knock-down of AKAP150 by RNAi depolarizes the astrocytic membrane potential and substantially reduces by 80% the ability of astrocytes to take up extracellular potassium during ischemic conditions. Therefore, upregulation of AKAP150 during ischemia preserves potassium conductance and the associated hyperpolarized membrane potential of astrocytes; properties of astrocytes needed to maintain extracellular brain homeostasis. Taken together, these data suggest that AKAP150 may play a pivotal role in the neuroprotective mechanism of astrocytes during pathological conditions.
-
Craniofacial muscle pain, such as spontaneous pain and bite-evoked pain, are major symptoms in patients with temporomandibular disorders and infection. However, the underlying mechanisms of muscle pain, especially mechanisms of highly prevalent spontaneous pain, are poorly understood. Recently, we reported that transient receptor potential vanilloid 1 (TRPV1) contributes to spontaneous pain but only marginally contributes to bite-evoked pain during masseter inflammation. ⋯ In contrast, inflammation-induced reduction of bite force was not affected by the inhibition of TRPA1 alone or in combination with TRPV1. These results suggest that simultaneous inhibition of TRPV1 and TRPA1 produces additive relief of spontaneous pain, but does not ameliorate bite-evoked pain during masseter inflammation. Our results provide further evidence that distinct mechanisms underlie spontaneous and bite-evoked pain from inflamed masseter muscle.
-
A disintegrin and metalloprotease protein 23 (ADAM23) is a transmembrane type I glycoprotein involved with the development and maintenance of the nervous system, including neurite outgrowth, neuronal adhesion and differentiation and regulation of synaptic transmission. In addition, ADAM23 seems to participate in immune response and tumor establishment through interaction with different members of integrin receptors. Here, we describe a novel monoclonal antibody (DL11C8) that specifically recognizes the cysteine-rich domain of both pre-protein (100 kDa) and mature (70 kDa) forms of ADAM23 from different species, including human, rodents and avian orthologs. ⋯ Indeed, the mature ADAM2370 kDa partitions between raft and non-raft membrane domains, while the pro-protein ADAM23100 kDa is mainly expressed in non-raft domains. These membranous distributions were observed in both different brain regions homogenates and primary cultured neurons lysates from mouse cortex and cerebellum. Taken together, these findings point out ADAM23 as a lipid raft molecular component.