Neuroscience
-
Although the precise mechanism of action of antidepressant drugs remains elusive, the neuroplastic hypothesis has gained acceptance during the last two decades. Several studies have shown that treatment with antidepressants such as Fluoxetine is associated with enhanced plasticity in control animals, especially in regions such as the visual cortex, the hippocampus and the medial prefrontal cortex. More recently, the basolateral amygdala has been shown to be affected by Fluoxetine leading to a reopening of critical period-like plasticity in the fear and aggression circuits. ⋯ Here we show that Fluoxetine reorganizes inhibitory circuits through increased expression of the plasticity-related molecule PSA-NCAM which regulates interneuronal structure and connectivity. In addition, we demonstrate that treatment with this antidepressant alters the structure of somatostatin interneurons both at the level of dendritic spines and of axonal en passant boutons. Our findings suggest that new strategies targeting somatostatin interneuron activity might help us to better understand depression and the action of antidepressants.
-
Neurobiological evidence suggests that the ketone metabolite β-hydroxybutyrate (BHBA) exerts many neuroprotective functions for the brain. The previous study revealed that BHBA could promote the expression of brain-derived neurotrophic factor (BDNF) at glucose inadequate condition. Here we demonstrated that BHBA administration induced the expression of BDNF in the hippocampus of mice fed with normal diet. ⋯ These results demonstrated that BHBA within the physiological range could promote BDNF expression in neurons via a novel signaling function. Moreover, BHBA might possess more broad epigenetic regulatory activities, which affected both the acetylation and demethylation of H3K27. Our findings reinforce the beneficial effect of BHBA on the central nervous system (CNS) and suggest that BHBA administration with no need for energy restriction might also be a promising intervention to improve the neuronal activity and ameliorate the degeneration of CNS.
-
The Na+/K+/Cl- cotransporter-1 (NKCC1) and the K+/Cl- cotransporter-2 (KCC2) set the transmembrane Cl- gradient in the brain, and are implicated in epileptogenesis. We studied the postnatal distribution of NKCC1 and KCC2 in wild-type (WT) mice, and in a mouse model of sleep-related epilepsy, carrying the mutant β2-V287L subunit of the nicotinic acetylcholine receptor (nAChR). In WT neocortex, immunohistochemistry showed a wide distribution of NKCC1 in neurons and astrocytes. ⋯ However, KCC2 expression decreased by P60 in the reticular nucleus, and more so in mice expressing β2-V287L. Therefore, a complex regulatory interplay occurs between heteromeric nAChRs and KCC2 in postnatal forebrain. The pathogenetic effect of β2-V287L may depend on altered KCC2 amounts in PFC during synaptogenesis, as well as in mature thalamocortical circuits.
-
Periventricular leukomalacia (PVL) is a severe type of white matter damage in premature infants and the most common cause of cerebral palsy. It is generally known to be caused by hypoxia and inflammation. Currently there is no effective treatment available, in part due to that the pathogenesis of the disease has not been well understood. ⋯ The electron microscopic images demonstrated that the microstructure of myelin structures was not significantly different between the wild-type and p38α MAPK CKO mice. In addition, oligodendrocyte degeneration in the corpus callosum white matter area was unaffected in the p38α MAPK CKO during and after the PVL induction. These data indicate that p38α MAPK in oligodendrocyte has minimal effect on myelination and oligodendrocyte survival in the mouse PVL model.
-
Perampanel (PER), a noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor antagonist, clinically used for seizure control, has been reported to exert neuroprotective effects in experimental models of neurodegenerative diseases. However, few studies have investigated the therapeutic effects of PER in brain injury including stroke. Our aim was to investigate the neuroprotective potential of PER using a rat transient middle cerebral artery occlusion (MCAO) model. ⋯ In addition, post-stroke secondary neuronal damage and cognitive impairments, using the Y-maze test, were assessed 30 days after MCAO. PER significantly improved spatial working memory, which was accompanied by hippocampal CA1 neuronal loss and cortical thinning, compared with vehicle. These results indicate that PER attenuates infarct volumes and motor function deficits possibly through its anti-inflammatory, antioxidant, and anti-apoptotic activities, mediated via activation of phosphatidylinositol 3-kinase (PI3K)/Akt pathways in the acute ischemic phase, and further ameliorates post-stroke cognitive impairments via the suppression of secondary neuronal damage in the chronic ischemic phase.