Neuroscience
-
Although the precise mechanism of action of antidepressant drugs remains elusive, the neuroplastic hypothesis has gained acceptance during the last two decades. Several studies have shown that treatment with antidepressants such as Fluoxetine is associated with enhanced plasticity in control animals, especially in regions such as the visual cortex, the hippocampus and the medial prefrontal cortex. More recently, the basolateral amygdala has been shown to be affected by Fluoxetine leading to a reopening of critical period-like plasticity in the fear and aggression circuits. ⋯ Here we show that Fluoxetine reorganizes inhibitory circuits through increased expression of the plasticity-related molecule PSA-NCAM which regulates interneuronal structure and connectivity. In addition, we demonstrate that treatment with this antidepressant alters the structure of somatostatin interneurons both at the level of dendritic spines and of axonal en passant boutons. Our findings suggest that new strategies targeting somatostatin interneuron activity might help us to better understand depression and the action of antidepressants.
-
The Engrailed-2 (En2) gene codes for a homeobox-containing transcription factor, involved in midbrain-hindbrain embryonic development. In postnatal brain, En2 is expressed in the ventral mesencephalon, cerebellum, hippocampus and neocortex. Two single-nucleotide polymorphisms (SNPs) that are associated to autism spectrum disorders (ASD) have been identified in the human EN2 gene. ⋯ As compared to En2+/+ NSCs, En2-/- NSCs derived from basal ganglia show impaired GABAergic differentiation accompanied by a reduced expression of the BDNF receptor trkB. Conversely, En2-/- NSCs derived from the neocortex expressed high levels of trkB and readily differentiated into neurons, as En2+/+ NSCs. Our results suggest that En2 contributes to GABAergic neuron differentiation from basal ganglia NSCs through a trkB-dependent BDNF signaling, thus providing a possible explanation for the reduced number of GABAergic interneurons detected in the En2-/- postnatal forebrain.
-
Strong evidence exists that Toll-like receptor (TLR)-mediated effects on microglia functional states can promote ictogenesis and epileptogenesis. So far, research has focused on the role of high-mobility group box protein 1 as an activator of TLRs. However, the development of targeting strategies might need to consider a role of additional receptor ligands. ⋯ The pronounced impact on the response to subsequent stimulations gives first evidence that genetic HSPA1A upregulation may also contribute to epileptogenesis. Thus, strategies inhibiting hsp70 or its expression might be of interest for prevention of seizures and epilepsy. However, conclusions about a putative pro-epileptogenic effect of hsp70 require further investigations in models with development of spontaneous recurrent seizures.
-
β-Amyloid (Aβ) plays an important role in the early pathogenesis of Alzheimer's disease (AD). In vitro studies have demonstrated that Aβ oligomers induce hippocampal and neocortical neuronal death. However the neurotoxic mechanisms by which soluble Aβ oligomers cause neuronal damage and death remain to be fully elucidated. ⋯ The C-terminal region of NSP3 unbound to a Cas protein was necessary for the NSP3-induced acceleration of neuronal death, as was Cas-independent Rap1A activation downstream of NSP3. Moreover, NSP3 RNAi knockdown partially rescued Aβ-oligomer-treated neurons. These results indicate that NSP3 upregulation by soluble Aβ oligomers may accelerate neuronal death via Cas-independent Rap1A activation, implicating NSP3 in the pathogenesis of AD.
-
Neonatal injury-induced exaggeration of pain hypersensitivity after adult trauma is a significant clinical challenge. However, the underlying mechanisms remain poorly understood. Growing evidence shows that spinal Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) contributes to chronic pain in adult rodents. ⋯ Finally, no alternation of SHP2 phosphorylation in the dorsal root ganglion and dorsal root of nIN-IN rats as well as PI3K expression in the dorsal root of nIN-IN rats intrathecally treated with NSC-87877 or SHP2 siRNA is observed. These results suggest that the phosphorylation and expression of SHP2 in the spinal dorsal horn play vital roles in neonatal incision-induced exaggeration of adult incisional pain via PI3K. Thus, SHP2 and PI3K may serve as potential therapeutic targets for exaggerated incisional pain induced by neonatal and adult injuries.