Neuroscience
-
Paired-pulse transcranial magnetic stimulation (ppTMS) has been used extensively to probe local facilitatory and inhibitory function in motor cortex. We previously developed a reliable ppTMS method to investigate these functions in visual cortex and found reduced thresholds for net intracortical inhibition compared to motor cortex. The current study used this method to investigate the temporal dynamics of local facilitatory and inhibitory networks in visual cortex in 28 healthy subjects. ⋯ Intervals of 50-200 ms exhibited statistically significant suppression of phosphenes, however, suppression was not uniform with some subjects demonstrating no change or facilitation. This study demonstrates that the temporal dynamics of local inhibitory and facilitatory networks are different across motor and visual cortex and that optimal parameters to index local inhibitory and facilitatory influences in motor cortex are not necessarily optimal for visual cortex. We refer to the observed inhibition as visual cortex inhibition (VCI) to distinguish it from the phenomenon reported in motor cortex.
-
Increasing studies have revealed that metabolic disorders, especially diabetes, are high risk factors for the development of Alzheimer's disease (AD) and other neurodegenerative diseases. It has been reported that patients with diabetes are prone to suffer from cognitive dysfunction (CD). Although abnormal glucose metabolism and deposition of amyloid β (Aβ) are proven to have a closely relationship with diabetes-induced CD, its exact mechanism is still undetermined. ⋯ Additionally, there were significant positive correlations between escape latency and p-YAP/YAP ratio in mPFC, anterior cingulate cortex (ACC) and hippocampus, as well as the level of LATS1 in liver, kidney and gut tissues. In conclusion, alterations in Hippo signaling may contribute to CD induced by diabetes. Therefore, therapeutic interventions improving Hippo signaling might be beneficial to the treatment of diabetes-induced CD and other neurodegenerative diseases.
-
The floor plate of the developing midbrain gives rise to dopaminergic (DA) neurons, an important class of cells involved in Parkinson's disease (PD). Neural progenitors of the midbrain floor plate utilize key genes in transcriptional networks to drive dopamine neurogenesis. Identifying factors that promote dopaminergic neuron transcriptional networks can provide insight into strategies for therapies in PD. ⋯ We then showed that overexpression of Nato3 in the developing chick mesencephalon produces a regionally dependent increase in genes associated with the DA neurogenesis, (such as Foxa2, Lmx1b and Shh) as well as DA neuron genes Nurr1 (an immature DA neuron marker) and mRNA expression of tyrosine hydroxylase (TH, a mature DA neuron marker). Interestingly, our data also showed that Nato3 is a potent regulator of Lmx1b by its broad induction of Lmx1b expression in neural progenitors of multiple regions of the CNS, including the midbrain and spinal cord. These data introduce a new, in vivo approach to identifying a gene that can drive DA transcriptional networks and provide the new insight that Nato3 can drive expression of key DA neuron genes, including Lmx1b, in neural progenitors.
-
Postoperative cognitive dysfunction (POCD) is a common postoperative complication observed in patients following. Here we tested the molecular mechanisms of memory loss in hippocampus of rat POCD model. ⋯ The protein assays confirmed that hippocampal actin cytoskeleton was depolymerized in low group while maintained in high group. This study confirms that high-dose propofol anesthesia could mitigate the development of POCD and provides evidences for actin cytoskeleton associated with this syndrome.
-
Mid-adulthood represents the critical window period usually associated with the development of age-related diseases. Despite several attempts to delineate the pathological mechanisms underlying postnatal immune challenge and altered brain functions, the role of sex-dependent changes in affective behaviors of middle-aged animals requires more attention. In this study, we sought to investigate behavioral and molecular response patterns at mid-adulthood linked to early-life immune activation. ⋯ Our data further demonstrated a significant increase in microglial complexity and increased levels of tumor necrosis factor (TNFα), nitric oxide (NOx), and lipid peroxidation in the prefrontal cortex of female rats compared to their male counterparts and phosphate-buffered saline (PBS) littermate controls. With these results, we established significant interaction between sex differences and LPS-induced alterations in behavior and associated oxidative and immunohistochemical changes. These findings may provide an insight to better understand the neuroimmunological mechanisms of sex-dependent brain pathological manifestations occurring at mid-adulthood.