Neuroscience
-
Status epilepticus (SE) is a life-threatening condition needing immediate care to prevent brain damage. SE with electrographic and behavioral features similar to those seen in humans is reproduced in rodents by i.p. pilocarpine injection, and can be terminated by diazepam and ketamine treatment but only behaviourally, not electrographically. Little is known on the behavioral and EEG effects induced by a delayed administration of ketamine (25 mg/kg) after diazepam (10 mg/kg) or vice versa. ⋯ However, diazepam administration before ketamine significantly shortened the time of behavioral recovery compared to when ketamine was administered before diazepam (p < 0.05). The two protocols were also associated to distinct EEG changes in gamma and high frequency oscillations. In conclusion, although diazepam and ketamine are not effective in stopping EEG SE, diazepam administration one hour before ketamine shortens behavioral recovery in pilocarpine-treated mice.
-
Recent studies associated schizophrenia with enhanced functionality of the presynaptic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex. Altered degradation pathways of the three core SNARE proteins: synaptosomal-associated protein 25 (SNAP25), syntaxin-1 and vesicle-associated membrane protein (VAMP) could contribute to enhanced complex function. To investigate these pathways, we first identified a 15-kDa SNAP25 fragment (f-S25) in human and rat brains, highly enriched in synaptosomal extractions, and mainly attached to cytosolic membranes with low hydrophobicity. ⋯ Statistical mediation analyses supported the hypothesis that reduced f-S25 density could upregulate SNARE fusion events in schizophrenia. Cortical calpain activity in schizophrenia did not differ from controls. f-S25 levels did not correlate with total calpain activity, indicating that if present, schizophrenia-related calpain dysfunction might occur locally at the presynaptic terminals. Overall, the present findings suggest the existence of an endogenous SNARE complex inhibitor related to SNAP25 proteolysis, associated with enhanced SNARE activity in schizophrenia.
-
Review
The Control of Neuronal Calcium Homeostasis by SNAP-25 and its Impact on Neurotransmitter Release.
The process of neurotransmitter release is central to the control of cell-to-cell communication in brain. SNAP-25 is a component of the SNARE complex, which, together with syntaxin-1 and synaptobrevin, mediates synaptic vesicle fusion with the plasma membrane. ⋯ Consistently, reduced levels of the protein affect presynaptic calcium homeostasis and result in pathologically enhanced glutamate exocytosis. The SNAP-25-dependent alterations of synaptic calcium dynamics may have direct impact on the development of neuropsychiatric disorders where the Snap-25 gene has been found to be involved.
-
Vti proteins are conserved from yeast to humans and regulate intracellular membrane trafficking by providing one specific SNARE domain, the Qb SNARE, to the four helical SNARE bundle that drives membrane fusion. Two mammalian Vti genes, Vti1a and Vti1b are reported to regulate distinct aspects of endolysosomal trafficking and retrograde transport to the Golgi, but have also been implicated in synaptic vesicle secretion. ⋯ We propose that, despite some unique aspects, the two mammalian VTI genes have largely redundant functions in neurosecretory cells and recycle molecules required for the sorting of regulated cargo to the Golgi. Defects in this recycling also lead to defects in synaptic transmission and dense core vesicle secretion.
-
SNARE-complexes drive the fusion of membrane-bound vesicles with target membranes or with each other (homotypic fusion). The SNARE-proteins are subdivided into Qa, Qb, Qc and R-SNAREs depending on their position in the four-helical SNARE-bundle. Here, we review the SNAP-25 protein sub-family, which includes both the Qb and Qc SNARE-domains within a single protein. ⋯ SNAP-29 is present on intracellular membranes and performs functions in autophagosome-to-lysosome fusion, among others. An overlapping function for SNAP-47 was described; in addition, SNAP-47 mediates postsynaptic AMPA-receptor insertion. Overall, the presence of two SNARE-domains confers members of this family the ability to associate to different Qa and R-SNAREs and drive diverse membrane fusion reactions; one member of the family, SNAP-25, has been devoted entirely to Ca2+-triggered fusion and has taken on a number of additional, regulatory roles.