Neuroscience
-
Training inhibitory control, the ability to suppress motor or cognitive processes, not only enhances inhibition processes, but also reduces the perceived value and behaviors toward the stimuli associated with the inhibition goals during the practice. While these findings suggest that inhibitory control training interacts with the aversive and reward systems, the underlying spatio-temporal brain mechanisms remain unclear. We used electrical neuroimaging analyses of event-related potentials to examine the plastic brain modulations induced by training healthy participants to inhibit their responses to rewarding (pleasant chocolate) versus aversive food pictures (unpleasant vegetables) with Go/NoGo tasks. ⋯ The electrophysiological results also revealed an interaction between reward responses and inhibitory control plasticity: we observed different effects of practice on the rewarding vs. aversive NoGo stimuli at 200 ms post-stimulus onset, when the conflicts between automatic response tendency and task demands for response inhibition are processed. Electrical source analyses revealed that this effect was driven by an increase in right orbito-cingulate and a decrease in temporo-parietal activity to the rewarding NoGo stimuli and the reverse pattern to the aversive stimuli. Our collective results provide direct neurophysiological evidence for interactions between stimulus reward value and executive control training, and suggest that changes in the assessment of stimuli with repeated motoric inhibition likely follow from associative learning and behavior-stimulus conflicts reduction mechanisms.
-
Recent studies associated schizophrenia with enhanced functionality of the presynaptic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex. Altered degradation pathways of the three core SNARE proteins: synaptosomal-associated protein 25 (SNAP25), syntaxin-1 and vesicle-associated membrane protein (VAMP) could contribute to enhanced complex function. To investigate these pathways, we first identified a 15-kDa SNAP25 fragment (f-S25) in human and rat brains, highly enriched in synaptosomal extractions, and mainly attached to cytosolic membranes with low hydrophobicity. ⋯ Statistical mediation analyses supported the hypothesis that reduced f-S25 density could upregulate SNARE fusion events in schizophrenia. Cortical calpain activity in schizophrenia did not differ from controls. f-S25 levels did not correlate with total calpain activity, indicating that if present, schizophrenia-related calpain dysfunction might occur locally at the presynaptic terminals. Overall, the present findings suggest the existence of an endogenous SNARE complex inhibitor related to SNAP25 proteolysis, associated with enhanced SNARE activity in schizophrenia.
-
Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins mediate membrane fusion events in eukaryotic cells. Traditionally recognized as major players in regulating presynaptic neurotransmitter release, accumulative evidence over recent years has identified several SNARE proteins implicated in important postsynaptic processes such as neurotransmitter receptor trafficking and synaptic plasticity. Here we analyze the emerging data revealing this novel functional dimension for SNAREs with a focus on the molecular specialization of vesicular recycling and fusion in dendrites compared to those at axon terminals and its impact in synaptic transmission and plasticity.
-
Synaptic degeneration is central in Alzheimer's disease (AD) pathogenesis and biomarkers to monitor this pathophysiology in living patients are warranted. We developed a novel sandwich enzyme-linked immunosorbent assay (ELISA) for the measurement of the pre-synaptic protein SNAP-25 in cerebrospinal fluid (CSF) and evaluated it as a biomarker for AD. CSF samples included a pilot study consisting of AD (N = 26) and controls (N = 26), and two independent clinical cohorts of AD patients and controls. ⋯ SNAP-25 could differentiate dementia due to AD (N = 41) from controls (N = 52) and MCI due to AD (N = 23) from controls (N = 52) with areas under the curve of 0.967 (P < 0.0001) and 0.948 (P < 0.0001), respectively. CSF SNAP-25 is a promising AD biomarker that differentiates AD patients in different clinical stages of the disease from controls with excellent diagnostic accuracy. Future studies should address the specificity of the CSF SNAP-25 against common differential diagnoses to AD, as well as how the biomarker changes in response to treatment with disease-modifying drug candidates.