Neuroscience
-
Training inhibitory control, the ability to suppress motor or cognitive processes, not only enhances inhibition processes, but also reduces the perceived value and behaviors toward the stimuli associated with the inhibition goals during the practice. While these findings suggest that inhibitory control training interacts with the aversive and reward systems, the underlying spatio-temporal brain mechanisms remain unclear. We used electrical neuroimaging analyses of event-related potentials to examine the plastic brain modulations induced by training healthy participants to inhibit their responses to rewarding (pleasant chocolate) versus aversive food pictures (unpleasant vegetables) with Go/NoGo tasks. ⋯ The electrophysiological results also revealed an interaction between reward responses and inhibitory control plasticity: we observed different effects of practice on the rewarding vs. aversive NoGo stimuli at 200 ms post-stimulus onset, when the conflicts between automatic response tendency and task demands for response inhibition are processed. Electrical source analyses revealed that this effect was driven by an increase in right orbito-cingulate and a decrease in temporo-parietal activity to the rewarding NoGo stimuli and the reverse pattern to the aversive stimuli. Our collective results provide direct neurophysiological evidence for interactions between stimulus reward value and executive control training, and suggest that changes in the assessment of stimuli with repeated motoric inhibition likely follow from associative learning and behavior-stimulus conflicts reduction mechanisms.
-
Recent studies associated schizophrenia with enhanced functionality of the presynaptic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex. Altered degradation pathways of the three core SNARE proteins: synaptosomal-associated protein 25 (SNAP25), syntaxin-1 and vesicle-associated membrane protein (VAMP) could contribute to enhanced complex function. To investigate these pathways, we first identified a 15-kDa SNAP25 fragment (f-S25) in human and rat brains, highly enriched in synaptosomal extractions, and mainly attached to cytosolic membranes with low hydrophobicity. ⋯ Statistical mediation analyses supported the hypothesis that reduced f-S25 density could upregulate SNARE fusion events in schizophrenia. Cortical calpain activity in schizophrenia did not differ from controls. f-S25 levels did not correlate with total calpain activity, indicating that if present, schizophrenia-related calpain dysfunction might occur locally at the presynaptic terminals. Overall, the present findings suggest the existence of an endogenous SNARE complex inhibitor related to SNAP25 proteolysis, associated with enhanced SNARE activity in schizophrenia.
-
Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins mediate membrane fusion events in eukaryotic cells. Traditionally recognized as major players in regulating presynaptic neurotransmitter release, accumulative evidence over recent years has identified several SNARE proteins implicated in important postsynaptic processes such as neurotransmitter receptor trafficking and synaptic plasticity. Here we analyze the emerging data revealing this novel functional dimension for SNAREs with a focus on the molecular specialization of vesicular recycling and fusion in dendrites compared to those at axon terminals and its impact in synaptic transmission and plasticity.
-
In central synapses, synaptobrevin-2 (also called VAMP-2) is the predominant synaptic vesicle SNARE protein that interacts with the plasma membrane SNAREs, SNAP-25 and syntaxin-1 to execute exocytosis. Mice deficient in synaptobrevin-2 or SNAP-25 show embryonic lethality, which precludes investigation of the complete loss-of-function of these proteins in the adult nervous system. However, mice that carry heterozygous null mutations survive into adulthood and are fertile. ⋯ This analysis revealed only mild phenotypes, SNAP-25 (+/-) mice exhibited marked hypoactivity, whereas synaptobrevin-2 (+/-) mice showed enhanced performance on the rotarod. The two mouse lines did not manifest significant deficits in anxiety-related behaviors, learning and memory measures, or prepulse inhibition. The rather mild behavioral deficits indicate that these key proteins, SNAP25 and synaptobrevin-2, are expressed in excess to circumvent the impact of potential fluctuations in expression levels on nervous system function.