Neuroscience
-
Sensitivity and reliability of animal behavioral assessment methods are critical for successful translation of in vitro findings to in vivo. Here we report a data transformation process in the elevated open platform task that generates a novel parameter, namely peak tolerance of fear (PTF) or its inversely correlated equivalent of anxiety quotient (AQ), to measure anxiogenic tendency in rodent. As compared to traditional parameters such as travel distance, time, or entries, PTF or AQ displays largely reduced data dispersion not only ingroup but also cross-study and cross-cohort, therefore representing a significant improvement of the methodology for rodent anxiety assessment.
-
Models of basal ganglia (BG) function predict that tonic inhibitory output to motor thalamus (MT) suppresses unwanted movements, and that a decrease in such activity leads to action selection. Further, for unilateral activity changes in the BG, a lateralized effect on contralateral movements can be expected due to ipsilateral thalamocortical connectivity. However, a direct test of these outcomes of thalamic inhibition has not been performed. ⋯ In confirmation of model predictions, we found that unilateral optogenetic inhibition of GABAergic output from the SNr, during ipsilaterally cued trials, biased decision making towards a contralateral lick without affecting motor performance. In contrast, optogenetic excitation of SNr terminals in MT resulted in an opposite bias towards the ipsilateral direction confirming a bidirectional effect of tonic nigral output on directional decision making. However, direct optogenetic excitation of neurons in the SNr resulted in bilateral movement suppression, which is in agreement with previous results that show such suppression for nigral terminals in the superior colliculus (SC), which receives a bilateral projection from SNr.
-
Subjective well-being (SWB) is the eternal pursuit of all mankind. Individual differences in SWB may reflect the way of emotional processing. Neuroimaging studies have partly examined the neural mechanism of the individual differences in SWB using resting-state functional magnetic resonance imaging (rs-fMRI). ⋯ Results showed that SWB is positively correlated with the activation of right posterior cingulate cortex, left interior temporal gyrus and left angular gyrus for the comparison of negative stimulus and neutral stimulus, revealing that happy individuals may be more proactive to use attention transfer and behavioral inhibition strategies to decrease negative experiences during negative emotional processing. In addition, high SWB is associated with strong functional connectivity between high-level cognitive networks (e.g., frontal-parietal network) and low-level perceptual networks (e.g., sensorimotor network), and weak functional connectivity within default mode network and within low-level perceptual networks, indicating that the self-reflection, emotional regulation and cognitive control during negative facial emotion processing underlies the individual differences in SWB. These findings provide a novel insight to characterize the brain functional basis of the individual differences in SWB.
-
Trauma to the peripheral nervous system (PNS) results in loss of motor and sensory functions. After an injury, a complex series of events begins, allowing axonal regeneration and target reinnervation. However, this regenerative potential is limited by several factors such as age, distance from the lesion site to the target and severity of lesion. ⋯ In addition, the results of electroneuromyography showed greater amplitude of the compound muscle action potentials in the first and second weeks, suggesting anticipation of regeneration in the inosine group. We also observed in the inosine group, motor and sensory neurons survival, reduction in the number of macrophages and myelin ovoids in the sciatic nerves, and an early recovery of motor and sensory functions. Thus, we conclude that the use of inosine accelerates axonal regeneration promoting an early recovery of motor and sensory functions.
-
Difficulty understanding speech-in-noise (SIN) is a pervasive problem faced by older adults particularly those with hearing loss. Previous studies have identified structural and functional changes in the brain that contribute to older adults' speech perception difficulties. Yet, many of these studies use neuroimaging techniques that evaluate only gross activation in isolated brain regions. ⋯ Additionally, we found top-down β connectivity between prefrontal and auditory cortices strengthened with poorer hearing thresholds despite minimal behavioral differences. This is consistent with the proposal that linguistic brain areas may be recruited to compensate for impoverished auditory inputs through increased top-down predictions to assist SIN perception. Overall, these results emphasize the importance of top-down signaling in low-frequency brain rhythms that help compensate for hearing-related declines and facilitate efficient SIN processing.