Neuroscience
-
Several reports of augmented hyperpolarisation-activated cyclic nucleotide-gated (HCN) currents in seizures have suggested a pro-convulsive identity for HCN channels. The mutations identified in one or more of the four HCN channel subunits are found to be contributing to different epileptic phenotypes. S126L, S632W, V246M and E515K are four different mutations affecting the HCN2 subunit and have been reported in febrile seizures and partial/generalised idiopathic epilepsies. ⋯ Their effects on excitability were studied by observing resting membrane potentials, input resistances and plasticity profiles for measuring the sliding modification threshold (SMT) of Bienenstock-Cooper-Munro (BCM) theory. Virtual knockouts of ion channels other than HCN were also performed to assess their role in altering excitability when they act alongside HCN2 mutations. Our results show that HCN2 mutations can potentially be a primary causative factor for excessive action potential firing through their effect on resting membrane potentials and input resistance.
-
Two issues were examined regarding the trigeminal system in larval lampreys: (1) for normal animals, double labeling was used to confirm that the trigeminal system has a topological organization; (2) following trigeminal nerve root transections, double labeling was used to test whether the topological organization of the trigeminal system is restored. First, for normal animals, Alexa 488 dextran amine applied to the medial oral hood (anterior head) labeled trigeminal motoneurons (MNs) in the ventromedial part of the trigeminal motor nuclei (nVm) and axons of trigeminal sensory neurons (SNs) in the ventromedial part of the trigeminal descending tracts (dV). Also, Texas red dextran amine (TRDA) applied to the lateral oral hood labeled trigeminal MNs in the dorsolateral nVm and sensory axons in the dorsolateral dV. ⋯ In addition, double labeling indicated a restoration and refinement of the topological organization of the trigeminal system with increasing recovery times, but mainly for nVm. Despite the paucity of growth of trigeminal sensory axons in dV even at long recovery times (12-16 wks), a substantial percentage of experimental animals recovered trigeminal-evoked swimming responses and trigeminal-evoked synaptic responses in reticulospinal (RS) neurons. Following trigeminal nerve root injury, several mechanisms, including axonal guidance cues, probably contribute to the substantial restoration of the topological organization of the lamprey trigeminal system.
-
Developmental dyscalculia (DD) is characterized by lower numerical and finger-related skills. Studies of enumeration among those DD that suggested core deficiency in pattern recognition, working memory or/and attention were mostly carried out in the visual modality. In our study, we examined visual (dots) enumeration of 1-10 stimuli and tactile (vibration) enumeration of 1-10 fingers among DD and matched-control adults. ⋯ In the tactile task, DD participants showed less accurate tactile enumeration only for neighboring arrangements, more profoundly for finger counting (FC) patterns. The longer exposure time in the visual task enabled us to explore pattern recognition effects when working memory and attention loads were low. We discuss possible modal-independent deficits in pattern recognition and working memory on enumeration performance among those with DD and the unique role of fingers in ordinal and cardinal representation of numbers.
-
Subjective well-being (SWB) is the eternal pursuit of all mankind. Individual differences in SWB may reflect the way of emotional processing. Neuroimaging studies have partly examined the neural mechanism of the individual differences in SWB using resting-state functional magnetic resonance imaging (rs-fMRI). ⋯ Results showed that SWB is positively correlated with the activation of right posterior cingulate cortex, left interior temporal gyrus and left angular gyrus for the comparison of negative stimulus and neutral stimulus, revealing that happy individuals may be more proactive to use attention transfer and behavioral inhibition strategies to decrease negative experiences during negative emotional processing. In addition, high SWB is associated with strong functional connectivity between high-level cognitive networks (e.g., frontal-parietal network) and low-level perceptual networks (e.g., sensorimotor network), and weak functional connectivity within default mode network and within low-level perceptual networks, indicating that the self-reflection, emotional regulation and cognitive control during negative facial emotion processing underlies the individual differences in SWB. These findings provide a novel insight to characterize the brain functional basis of the individual differences in SWB.
-
Trauma to the peripheral nervous system (PNS) results in loss of motor and sensory functions. After an injury, a complex series of events begins, allowing axonal regeneration and target reinnervation. However, this regenerative potential is limited by several factors such as age, distance from the lesion site to the target and severity of lesion. ⋯ In addition, the results of electroneuromyography showed greater amplitude of the compound muscle action potentials in the first and second weeks, suggesting anticipation of regeneration in the inosine group. We also observed in the inosine group, motor and sensory neurons survival, reduction in the number of macrophages and myelin ovoids in the sciatic nerves, and an early recovery of motor and sensory functions. Thus, we conclude that the use of inosine accelerates axonal regeneration promoting an early recovery of motor and sensory functions.