Neuroscience
-
Sex and ovarian function contribute to hypertension susceptibility, however, the mechanisms are not well understood. Prior studies show that estrogens and neurogenic factors, including hypothalamic glutamatergic NMDA receptor plasticity, play significant roles in rodent hypertension. Here, we investigated the role of sex and ovarian failure on AMPA receptor plasticity in estrogen-sensitive paraventricular nucleus (PVN) neurons in naïve and angiotensin II (AngII) infused male and female mice and female mice at early and late stages of accelerated ovarian failure (AOF). ⋯ Significantly, only late stage-AOF female mice infused with AngII had an increase in GluA1 near the plasma membrane in dendrites of ERβ-expressing PVN neurons. In contrast, prior studies reported that plasmalemmal NMDA GluN1 increased in ERβ-expressing PVN dendrites in males and early, but not late stage AOF females. Together, these findings reveal that early and late stage AOF female mice display unique molecular signatures of long-lasting synaptic strength prior to, and following hypertension.
-
Alzheimer's disease (AD) is a neurodegenerative disorder classically characterized by cognitive functions impairment. However, its symptomatology is complex and the depression is one of the most frequent behavioral changes in AD. AD pathology includes neuroinflammation and oxidative stress resulting in the Aβ protein accumulation. ⋯ Furthermore, NLC C reduced the Aβ-generated oxidative stress in the prefrontal cortex, evidenced by the increase in the reactive species levels, superoxide dismutase and catalase activities. Importantly, NLC C were more effective than the free curcumin. Thus, we demonstrated the antidepressant-like and antioxidant effects of NLC C in a mouse model of AD, suggesting its therapeutic potential for this disorder.
-
Non-synaptic transmission is pervasive throughout the nervous system. It appears especially prevalent in peripheral ganglia, where non-synaptic interactions between neighboring cell bodies have been described in both physiological and pathological conditions, a phenomenon referred to as cross-depolarization (CD) and thought to play a role in sensory processing and chronic pain. CD has been proposed to be mediated by a chemical agent, but its identity has remained elusive. ⋯ Furthermore, we show that DRG glial cells also play a cell-type specific role in CD regulation. Fluorocitrate-induced glial inactivation had no effect on A-cells but enhanced CD in C-cells. These findings shed light on the mechanism of CD in the DRG and pave the way for further analysis of non-synaptic neuronal communication in sensory ganglia.
-
Two issues were examined regarding the trigeminal system in larval lampreys: (1) for normal animals, double labeling was used to confirm that the trigeminal system has a topological organization; (2) following trigeminal nerve root transections, double labeling was used to test whether the topological organization of the trigeminal system is restored. First, for normal animals, Alexa 488 dextran amine applied to the medial oral hood (anterior head) labeled trigeminal motoneurons (MNs) in the ventromedial part of the trigeminal motor nuclei (nVm) and axons of trigeminal sensory neurons (SNs) in the ventromedial part of the trigeminal descending tracts (dV). Also, Texas red dextran amine (TRDA) applied to the lateral oral hood labeled trigeminal MNs in the dorsolateral nVm and sensory axons in the dorsolateral dV. ⋯ In addition, double labeling indicated a restoration and refinement of the topological organization of the trigeminal system with increasing recovery times, but mainly for nVm. Despite the paucity of growth of trigeminal sensory axons in dV even at long recovery times (12-16 wks), a substantial percentage of experimental animals recovered trigeminal-evoked swimming responses and trigeminal-evoked synaptic responses in reticulospinal (RS) neurons. Following trigeminal nerve root injury, several mechanisms, including axonal guidance cues, probably contribute to the substantial restoration of the topological organization of the lamprey trigeminal system.
-
Astrocytes comprise a heterogenic group of glial cells, which perform homeostatic functions in the central nervous system. These cells react to all kind of insults by changing the morphology and function that result in a transition from the quiescent to a reactive phenotype. Trimethyltin (TMT) intoxication, which reproduces pathological events in the hippocampus similar to those associated with seizures and cognitive decline, has been proven as a useful model for studying responses of the glial cells to neurodegeneration. ⋯ In CA1 subregion, GFAP+ astrocytes preserved their domain organization and responded with typical hypertrophy, while the hilar GFAP+ astrocytes developed atrophy-like phenotype and increased expression of vimentin and nestin 7 days after the exposure. Both reactive and atrophied-like astrocytes expressed Kir4.1 in CA1/CA3 and the hilus of DG, respectively, indicating that these cells did not change their potential for normal activity at this time point of pathology. Together, the results demonstrate the persistence of two protoplasmic morphotypes of astrocytes, with distinct appearance, function, and fate after TMT-induced neurodegeneration, suggesting their pleiotropic roles in the hippocampal response to neurodegeneration.