Neuroscience
-
Alpha-Synuclein (α-Syn) is expressed in the central nervous system and the nervous system of the gut (enteric nervous system, ENS), and is well known to be the major constituent of Lewy bodies which are the hallmark of Parkinson's disease. Gastrointestinal disorders frequently manifest several years before motor deficits develop in Parkinson's patients. ⋯ We found that α-Syn is predominantly expressed in cholinergic varicosities, which contain vesicular acetylcholine transporter. α-Syn KO mice had higher enteric neuron density and a larger proportion of cholinergic neurons, notably those containing calretinin, demonstrating a role for α-Syn in regulating development of these neurons. Moreover, α-Syn deletion enhanced the amplitude of synaptically activated [Ca2+]i transients that are primarily mediated by acetylcholine activating nicotinic receptors suggesting that α-Syn modulates the availability of acetylcholine in enteric nerve terminals.
-
The vestibular system of the inner ear contains Type I and Type II hair cells (HCs) generated from sensory progenitor cells; however, little is known about how the HC subtypes are formed. Sox2 (encoding SRY-box 2) is expressed in Type II, but not in Type I, HCs. The present study aimed to investigate the role of SOX2 in cell fate determination in Type I vs. ⋯ These results demonstrate that SOX2 plays a critical role in the determination of Type II vs. Type I HC fate. The results suggested that Sox2 is a potential target for generating Type I HCs, which may be important for regenerative strategies for balance disorders.
-
Noise-induced hearing loss generally induces loudness recruitment, but sometimes gives rise to hyperacusis, a debilitating condition in which moderate intensity sounds are perceived abnormally loud. In an attempt to develop an animal model of loudness hyperacusis, we exposed rats to a 16-20 kHz noise at 104 dB SPL for 12 weeks. Behavioral reaction time-intensity functions were used to assess loudness growth functions before, during and 2-months post-exposure. ⋯ Consistent with central gain models, the gross neural responses from the auditory cortex and amygdala were proportionately much larger than those from the cochlea. However, despite central amplification, the population responses in the auditory cortex and amygdala were still below the level needed to fully account for hyperacusis and/or recruitment. Having developed procedures that can consistently induce hyperacusis in rats, our results set the stage for future studies that seek to identify the neurobiological events that give rise to hyperacusis and to develop new therapies to treat this debilitating condition.
-
Growing evidence indicates that early-life inflammation has adverse effects on adult hippocampal neurogenesis and GABA system. Based the report that hippocampal GABA system is a key modulator in adult hippocampal neurogenesis, the aim of this study was to investigate whether and how early inflammation affects GABAergic system resulting in the alterations of adult hippocampal neurogenesis and related behaviors. Neonatal mice received a daily subcutaneous injection of lipopolysaccharide (LPS, 50 μg/kg) or saline on postnatal days (PND) 3-5. ⋯ Additionally, postnatal LPS treatment resulted in the activation of astrocytes and the increase expression of toll-like receptor 4 (TLR4) in the second postnatal week and the downregulation of BDNF-TrkB pathway in adulthood. The treatment with TLR4 inhibitor TAK-242 restored the decrease of BrdU+/NeuN+ cells and depression-like behaviors in LPS mice via improving GABAAR. The results indicate that postnatal LPS exposure impairs adult hippocampal neurogenesis and causes depression-like behaviors through early astrocytes activation triggering the later GABAAR downregulation.
-
We explore whether near infrared light can change patterns of resting (task-negative) and/or evoked (task-positive; eg finger-tapping) brain activity in normal, young human subjects using fMRI (functional magnetic resonance imaging). To this end, we used a vielight transcranial device (810 nm) and compared the scans in subjects after active- and sham-light sessions. Our fMRI results showed that, while light had no effect on cerebral blood flow and global resting state brain activity (task-negative), there were clear differences between the active- and sham-light sessions in the patterns of evoked brain activity after finger-tapping (task-positive). ⋯ In summary, our fMRI findings indicated that transcranially applied light did have a major impact on brain activity in normal subjects, but only when the brain region was itself functionally active, when undertaking a particular task. We suggest that these light-induced changes, particularly those in parietal association cortex, were associated with attention and novelty, and served to deactivate the so-called default mode network. Our results lay the template for our planned fMRI explorations into the effects of light in both Alzheimer's and Parkinson's disease patients.