Neuroscience
-
Microglia activation plays a key role in regulating inflammatory and immune reaction during cerebral ischemia and it exerts pro-inflammatory or anti-inflammatory effect depending on M1/M2 polarization phenotype. Cysteinyl leukotriene 2 receptor (CysLT2R) is a potent inflammatory mediator receptor, and involved in cerebral ischemic injury, but the mechanism of CysLT2R regulating inflammation and neuron damage remains unclear. Here, we found that LPS and CysLT2R agonist NMLTC4 significantly increased microglia proliferation and phagocytosis, up-regulated the mRNA expression of M1 polarization markers (IL-1β, TNF-α, IFN-γ, CD86 and iNOS), down-regulated the expression of M2 polarization markers (Arg-1, CD206, TGF-β, IL-10, Ym-1) and increased the release of IL-1β and TNF-α. ⋯ The conditional medium of BV-2 cells contained HAMI3379 could inhibit SH-SY5Y cells apoptosis induced by LPS and NMLTC4. These results were further confirmed in primary microglia. The findings indicate that CysLT2R was involved in inflammation and neuronal damage by inducing the activation of microglia M1 polarization and NF-κB pathway, inhibiting microglia M1 polarization and promoting microglia polarization toward M2 phenotype which may exerts neuroprotective effects, and targeting CysLT2R may be a new therapeutic strategy against cerebral ischemia stroke.
-
The pancreatic peptide, Amylin (AMY), reportedly affects nociception in rodents. Here, we investigated the potential effect of AMY on the tolerance to morphine and on the expression of BDNF at both levels of protein and RNA in the lumbar spinal cord of morphine tolerant rats. Animals in both groups of control and test received a single daily dose of intrathecal (i.t.) morphine for 10 days. ⋯ Levels of pro-BDNF and BDNF proteins remained unchanged in the lumbar spinal cord of rats treated by AMY alone. These results suggest that i.t. AMY not only abolished morphine tolerance, but also reduced the morphine induced increase in the expression of both BDNF transcripts and protein in the lumbar spinal cord.
-
A right-left dichotomy of olfactory processes has been recognized on several levels of the perception or processing of olfactory input. On a clinical level, the lateralization of components of human olfaction is contrasted by the predominantly birhinal olfactory testing. The present analyses aimed at investigation of the relation of such side-differences related with the subject's age, sex and with the cause or degree of olfactory loss. ⋯ The observation particularly owed to olfactory loss attributed to head trauma, which may hint at a different impact on the left or right hemisphere processing of olfactory input. Thus, between-nostrils agreement in odor identification is limited and the common unilateral olfactory testing probably misses important information. Lateral differences owe to age, sex, kind of odor and etiology of olfactory loss.
-
Noise-induced hearing loss generally induces loudness recruitment, but sometimes gives rise to hyperacusis, a debilitating condition in which moderate intensity sounds are perceived abnormally loud. In an attempt to develop an animal model of loudness hyperacusis, we exposed rats to a 16-20 kHz noise at 104 dB SPL for 12 weeks. Behavioral reaction time-intensity functions were used to assess loudness growth functions before, during and 2-months post-exposure. ⋯ Consistent with central gain models, the gross neural responses from the auditory cortex and amygdala were proportionately much larger than those from the cochlea. However, despite central amplification, the population responses in the auditory cortex and amygdala were still below the level needed to fully account for hyperacusis and/or recruitment. Having developed procedures that can consistently induce hyperacusis in rats, our results set the stage for future studies that seek to identify the neurobiological events that give rise to hyperacusis and to develop new therapies to treat this debilitating condition.
-
Dystonia is a disabling neurological syndrome characterized by abnormal movements and postures that result from intermittent or sustained involuntary muscle contractions; mutations of DYT1/TOR1A are the most common cause of childhood-onset, generalized, inherited dystonia. Patient and mouse model data strongly support dysregulation of the nigrostriatal dopamine neurotransmission circuit in the presence of the DYT1-causing mutation. ⋯ We found that over-expression of mutant torsinA in MSNs produces complex cell-autonomous and non-cell autonomous alterations in nigrostriatal dopaminergic and intrastriatal cholinergic function, similar to that found in pan-cellular DYT1 mouse models. These data introduce targets for future studies to identify which are causative and which are compensatory in DYT1 dystonia, and thereby aid in defining appropriate therapies.