Neuroscience
-
We explore whether near infrared light can change patterns of resting (task-negative) and/or evoked (task-positive; eg finger-tapping) brain activity in normal, young human subjects using fMRI (functional magnetic resonance imaging). To this end, we used a vielight transcranial device (810 nm) and compared the scans in subjects after active- and sham-light sessions. Our fMRI results showed that, while light had no effect on cerebral blood flow and global resting state brain activity (task-negative), there were clear differences between the active- and sham-light sessions in the patterns of evoked brain activity after finger-tapping (task-positive). ⋯ In summary, our fMRI findings indicated that transcranially applied light did have a major impact on brain activity in normal subjects, but only when the brain region was itself functionally active, when undertaking a particular task. We suggest that these light-induced changes, particularly those in parietal association cortex, were associated with attention and novelty, and served to deactivate the so-called default mode network. Our results lay the template for our planned fMRI explorations into the effects of light in both Alzheimer's and Parkinson's disease patients.
-
This study compared the effects of fatigue on corticospinal responsiveness in the upper- and lower-limb muscles of the same participants. Seven healthy males performed a 2-min maximal voluntary isometric contraction of the elbow flexors or knee extensors on four separate days. Electromyographic responses were elicited by nerve stimulation (maximal M-wave) in all sessions and by transcranial magnetic stimulation (motor-evoked potential; silent period) and spinal tract stimulation (cervicomedullary or thoracic motor-evoked potentials; silent period) in one session each per limb. ⋯ Sustained maximal contractions elicit different neurophysiological adjustments in upper- and lower-limb muscles. Specifically, motoneuronal excitability was reduced in biceps brachii, but not in rectus femoris, and this reduction required greater compensatory adjustments from the motor cortex. Therefore, changes in cortical and spinal excitability during sustained maximal exercise are likely specific to the muscle performing the task.
-
K-complexes are important transient bio-signal waveforms in sleep stage 2. Detecting k-complexes visually requires a highly qualified expert. In this study, an efficient method for detecting k-complexes from electroencephalogram (EEG) signals based on fractal and frequency features coupled with an ensemble model of three classifiers is presented. ⋯ Comparisons were also made with existing k-complexes detection approaches for which the same datasets were used. The results demonstrate that the proposed approach is efficient in identifying the k-complexes in EEG signals; it yields optimal results with a window size 0.5 s. It can be an effective tool for sleep stages classification and can be useful for doctors and neurologists for diagnosing sleep disorders.
-
A stroke-like event follows seizures which may be responsible for the postictal state and a contributing factor to the development of seizure-induced brain abnormalities and behavioral dysfunction associated with epilepsy. Caffeine is the world's most popular drug with ∼85% of people in the USA consuming it daily. Thus, persons with epilepsy are likely to have caffeine in their body and brain during seizures. ⋯ Likewise, the specific A2A receptor antagonist, SCH-58261, mimicked caffeine by causing a significant drop in pre-seizure pO2 and the area and time below the severe hypoxic threshold. Moreover, the A2A receptor agonist, CGS-21680 was able to prevent the effect of both caffeine and SCH-58261 adding further evidence that caffeine is likely acting through the A2A receptor. Clinical tracking and investigations are needed to determine the effect of caffeine on postictal symptomology and blood flow in persons with epilepsy.
-
Accumulation of microtubule associated protein tau in the substantia nigra is associated with several tauopathies including progressive supranuclear palsy (PSP). A number of studies have used mutant tau transgenic mouse model to mimic the neuropathology of tauopathies and disease phenotypes. However, tau expression in these transgenic mouse models is not specific to brain subregions, and may not recapitulate subcortical disease phenotypes of PSP. ⋯ Furthermore, the iAAV-tau-injected mice displayed severe motor deficits including impaired movement ability, motor balance, and motor coordination compared to the control groups over a short time-course. Immunochemical analysis revealed that tau gene transfer significantly resulted in loss of tyrosine hydroxylase-positive dopaminergic neurons and elevated phosphorylated tau in the substantia nigra. Our development of dopaminergic neuron-specific neurodegenerative mouse model with tauopathy will be helpful for studying the underlying mechanism of pathological protein propagation as well as development of new therapies.