Neuroscience
-
An important pathology in Parkinson's disease (PD) is the earlier and more severe degeneration of noradrenergic neurons in the locus coeruleus (LC) than dopaminergic neurons in the substantia nigra. However, the basis of such selective vulnerability to insults remains obscure. Using noradrenergic and dopaminergic cell lines, as well as primary neuronal cultures from rat LC and ventral mesencephalon (VM), the present study compared oxidative DNA damage response markers after exposure of these cells to hydrogen peroxide (H2O2). ⋯ Consistent with these measurements, exposure of SK-N-BE(2)-M17 cells to H2O2 resulted in higher levels of reactive oxygen species (ROS). Further experiments showed that exposure of SK-N-BE(2)-M17 cells to H2O2 caused an increased level of noradrenergic transporter, reduced protein levels of copper transporter (Ctr1) and 8-oxoGua DNA glycosylase, as well as amplified levels of Cav1.2 and Cav1.3 expression. Taken together, these experiments indicated that noradrenergic neuronal cells seem to be more vulnerable to oxidative damage than dopaminergic neurons, which may be related to the intrinsic characteristics of noradrenergic neuronal cells.
-
We explore whether near infrared light can change patterns of resting (task-negative) and/or evoked (task-positive; eg finger-tapping) brain activity in normal, young human subjects using fMRI (functional magnetic resonance imaging). To this end, we used a vielight transcranial device (810 nm) and compared the scans in subjects after active- and sham-light sessions. Our fMRI results showed that, while light had no effect on cerebral blood flow and global resting state brain activity (task-negative), there were clear differences between the active- and sham-light sessions in the patterns of evoked brain activity after finger-tapping (task-positive). ⋯ In summary, our fMRI findings indicated that transcranially applied light did have a major impact on brain activity in normal subjects, but only when the brain region was itself functionally active, when undertaking a particular task. We suggest that these light-induced changes, particularly those in parietal association cortex, were associated with attention and novelty, and served to deactivate the so-called default mode network. Our results lay the template for our planned fMRI explorations into the effects of light in both Alzheimer's and Parkinson's disease patients.
-
The vestibular system of the inner ear contains Type I and Type II hair cells (HCs) generated from sensory progenitor cells; however, little is known about how the HC subtypes are formed. Sox2 (encoding SRY-box 2) is expressed in Type II, but not in Type I, HCs. The present study aimed to investigate the role of SOX2 in cell fate determination in Type I vs. ⋯ These results demonstrate that SOX2 plays a critical role in the determination of Type II vs. Type I HC fate. The results suggested that Sox2 is a potential target for generating Type I HCs, which may be important for regenerative strategies for balance disorders.
-
A stroke-like event follows seizures which may be responsible for the postictal state and a contributing factor to the development of seizure-induced brain abnormalities and behavioral dysfunction associated with epilepsy. Caffeine is the world's most popular drug with ∼85% of people in the USA consuming it daily. Thus, persons with epilepsy are likely to have caffeine in their body and brain during seizures. ⋯ Likewise, the specific A2A receptor antagonist, SCH-58261, mimicked caffeine by causing a significant drop in pre-seizure pO2 and the area and time below the severe hypoxic threshold. Moreover, the A2A receptor agonist, CGS-21680 was able to prevent the effect of both caffeine and SCH-58261 adding further evidence that caffeine is likely acting through the A2A receptor. Clinical tracking and investigations are needed to determine the effect of caffeine on postictal symptomology and blood flow in persons with epilepsy.