Neuroscience
-
LIMK2 is involved in neuronal functions by regulating actin dynamics. Different isoforms of LIMK2 are described in databanks. LIMK2a and LIMK2b are the most characterized. ⋯ Our results also suggest an implication of LIMK2-1 in neurite outgrowth and neurons arborization which appears to be affected by the p. S668P variation. Therefore our results suggest that LIMK2-1 plays a role in the developing brain, and that a rare variation of this isoform is a susceptibility factor in ID.
-
The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that modify extracellular matrix components and play crucial roles in development and numerous diseases. ADAMTS18 is a member of the ADAMTS family, and genome-wide association studies made an initial association of ADAMTS18 with white matter integrity in healthy people of 72-74 years old. However, the potential roles of ADAMTS18 in central nervous system remain unclear. ⋯ Behavioral tests showed that Adamts18 KO mice had reduced levels of depression-like behaviors compared to their wild-type (WT) littermates. The increased neurite formation could be attributed in part to reduced phosphorylation levels of the collapsin response mediator protein-2 (CRMP2) due to activation of the laminin/PI3K/AKT/GSK-3β signaling pathway. Our findings revealed a critical role of ADAMTS18 in neuronal morphogenesis and emotional control in mice.
-
Reactive oxygen species (ROS) modulate the growth of neural stem/precursor cells (NS/PCs) and participate in hippocampus-associated learning and memory. However, the origin of these regulatory ROS in NS/PCs is not fully understood. In the present study, we found that Nox4, a ROS-producing NADPH oxidase family protein, is expressed in primary cultured NS/PCs and in those of the adult mouse brain. ⋯ Although pathological and functional damages in the hippocampus induced by the neurotoxin trimethyltin were not significantly different between wild-type and Nox4-/- mice, the post-injury reactive proliferation of NS/PCs and neurogenesis in the subgranular zone (SGZ) of the dentate gyrus were significantly impaired in Nox4-/- animals. Restoration from the trimethyltin-induced impairment in recognition and spatial working memory was also significantly attenuated in Nox4-/- mice. Collectively, our findings suggest that Nox4 participates in NS/PC proliferation and neurogenesis in the hippocampus following injury, thereby helping to restore memory function.
-
The α3 Na+,K+-ATPase (α3NKA) is one of four known α isoforms of the mammalian transporter. A deficiency in α3NKA is linked to severe movement control disorders. Understanding the pathogenesis of these disorders is limited by an incomplete knowledge of α3NKA expression in the brain as well as the challenges associated with identifying living cells that express the isoform for subsequent electrophysiological studies. ⋯ Fluorescence was not detected in astrocytes or white matter areas. ZsGreen1-positive neurons were readily observed in fresh (unfixed) brain sections, which were amenable to patch-clamp recordings. Thus, the α3NKA-ZsGreen1 mouse model provides a powerful tool for studying the distribution and functional properties of α3NKA-expressing neurons in the brain.
-
Prolonged occupational exposure to hand-held vibrating tools leads to pain and reductions in tactile sensitivity, grip strength and manual dexterity. The goal of the current study was to use a rat-tail vibration model to determine how vibration frequency influences factors related to nerve injury and dysfunction. Rats were exposed to restraint, or restraint plus tail vibration at 62.5 Hz or 250 Hz. ⋯ There was an increase in glutathione, but no changes in other measures of oxidative activity in the peripheral nerve. However, measures of oxidative stress were increased in the dorsal root ganglia (DRG). These changes in pro-inflammatory factors and markers of oxidative stress in the peripheral nerve and DRG were associated with inflammation, and reductions in myelin basic protein and post-synaptic density protein (PSD)-95 gene expression, suggesting that vibration-induced changes in sensory function may be the result of changes at the exposed nerve, the DRG and/or the spinal cord.