Neuroscience
-
The endocannabinoid system (ECS) regulates several physiological processes in the Central Nervous System, including the modulation of neuronal excitability via activation of cannabinoid receptors (CBr). Both glutaric acid (GA) and quinolinic acid (QUIN) are endogenous metabolites that, under pathological conditions, recruit common toxic mechanisms. A synergistic effect between them has already been demonstrated, supporting potential implications for glutaric acidemia type I (GA I). ⋯ The use of the CB1 receptor reverse agonist AM251 in both biological preparations prevented partially the protective effects exerted by AEA, thus suggesting a partial role of CB1 receptors in this toxic model. AEA also prevented the cell damage and apoptotic death induced by the synergic model in cell cultures. Altogether, these findings demonstrate a modulatory role of the ECS on the synergic toxic actions exerted by QUIN + GA, thus providing key information for the understanding of the pathophysiological events occurring in GA I.
-
Bilingualism is associated with enhancements in perceptual and cognitive processing necessary for juggling multiple languages. Recent psychophysical studies demonstrate bilinguals also show enhanced multisensory processing and more restricted temporal binding windows for integrating audiovisual information. Here, we probed the neural mechanisms of bilinguals' audiovisual benefits. ⋯ Regional activations were associated with an opposite pattern of behaviors: whereas stronger V1 and PAC activity predicted slower behavioral responses, stronger frontal BA10 responses elicited faster judgments. Our results suggest bilinguals' higher precision in audiovisual perception reflects more veridical sensory coding of physical cues coupled with superior top-down gating of sensory information to suppress the generation of false percepts. Findings underscore that the plasticity afforded by speaking multiple languages shapes extra-linguistic brain regions and can enhance audiovisual brain processing in a domain-general manner.
-
Parkinson's Disease (PD) is a multi-system neurodegenerative disease where approximately 90% of cases are idiopathic. The remaining 10% of the cases can be traced to a genetic origin and research has largely focused on these associated genes to gain a better understanding of the molecular and cellular pathogenesis for PD. The gene encoding vacuolar protein sorting protein 35 (VPS35) has been definitively linked to late onset familial PD following the identification of a point mutation (D620N) as the causal agent in a Swiss family. ⋯ In this review, we examine what is currently known about VPS35, which has pleiotropic effects, as well as proposed mechanisms of pathogenesis by the D620N mutation. A brief survey of other VPS35 polymorphisms is also provided. Lastly, model systems that are being utilized for these investigations and possible directions for future research are discussed.
-
Depression or stress is reportedly related to the overflow of inflammatory factors in the body and T cells were reported to play important roles in balancing the release of inflammatory factors through vagus nerve circuit. However, few works have been conducted to find if natural killer (NK) cells can also exert the similar function in the reported vagus nerve circuit as T cells and if there was any relationship between depression and this function. In the present study, the behavioral tests on BALB/c mice indicated that the depressant-like symptoms could be improved and simultaneously the concentrations of inflammatory factors in peripheral blood could be reduced significantly by adoptively transferring NK cells into stressed BALB/c mice. ⋯ Behavioral tests on NCG mice indicated that the antidepressant-like effects of NK cells notably declined after adoptively transferring NK cells with β2-AR deficiency or with ChAT (choline acetyltransferase) deficiency into stressed NCG mice. Simultaneously, the anti-inflammatory effects also declined significantly both in vivo and in vitro, which indicated that the antidepressant-like property of NK cells may be related to its ability of controlling the release of inflammatory factors. Taken together, we find that NK cells may balance the release of inflammatory factors in our body by transporting the information between the terminal vagal branches and macrophages, which is the mechanism that NK cells may exert antidepressant-like effects.
-
Intracortical inhibitory modulation seems crucial for an intact motor control and motor learning. However, the influence of long(er) term training on short-interval intracortical inhibition (SICI) is scarcely investigated. With respect to balance, it was previously shown that with increasing postural task difficulty, SICI decreased but the effect of balance training (BT) is unknown. ⋯ The present study confirms previous findings of task-specific modulation of SICI when balancing. More importantly, training was shown to increase SICI and this increase was correlated with changes in balance performance. Thus, changes in SICI seem to be involved not only for the control but also when adapting upright posture with training.