Neuroscience
-
The striatum of the basal ganglia is pivotal for voluntary movements and is implicated in debilitating movement disorders such as Parkinsonism and dystonia. Striatum projects to downstream nuclei through direct (dSPN) and indirect (iSPN) pathway projection neurons thought to exert opposite effects on movement. In rodent models of striatal function, unilateral dopamine deprivation induces ipsiversive rotational behavior. ⋯ Bursts of ipsiversive rotations were interspersed with normal ambulation. However, partial unilateral inhibition of ∼20% of dorsostriatal dSPNs did not affect horizontal and vertical locomotion or forelimb use preference. Overall, our results substantiate a unique role of dSPNs in promoting response bias in rotational behavior and show this to be a highly sensitive measure of dSPN performance.
-
The endocannabinoid system (ECS) regulates several physiological processes in the Central Nervous System, including the modulation of neuronal excitability via activation of cannabinoid receptors (CBr). Both glutaric acid (GA) and quinolinic acid (QUIN) are endogenous metabolites that, under pathological conditions, recruit common toxic mechanisms. A synergistic effect between them has already been demonstrated, supporting potential implications for glutaric acidemia type I (GA I). ⋯ The use of the CB1 receptor reverse agonist AM251 in both biological preparations prevented partially the protective effects exerted by AEA, thus suggesting a partial role of CB1 receptors in this toxic model. AEA also prevented the cell damage and apoptotic death induced by the synergic model in cell cultures. Altogether, these findings demonstrate a modulatory role of the ECS on the synergic toxic actions exerted by QUIN + GA, thus providing key information for the understanding of the pathophysiological events occurring in GA I.
-
Depression or stress is reportedly related to the overflow of inflammatory factors in the body and T cells were reported to play important roles in balancing the release of inflammatory factors through vagus nerve circuit. However, few works have been conducted to find if natural killer (NK) cells can also exert the similar function in the reported vagus nerve circuit as T cells and if there was any relationship between depression and this function. In the present study, the behavioral tests on BALB/c mice indicated that the depressant-like symptoms could be improved and simultaneously the concentrations of inflammatory factors in peripheral blood could be reduced significantly by adoptively transferring NK cells into stressed BALB/c mice. ⋯ Behavioral tests on NCG mice indicated that the antidepressant-like effects of NK cells notably declined after adoptively transferring NK cells with β2-AR deficiency or with ChAT (choline acetyltransferase) deficiency into stressed NCG mice. Simultaneously, the anti-inflammatory effects also declined significantly both in vivo and in vitro, which indicated that the antidepressant-like property of NK cells may be related to its ability of controlling the release of inflammatory factors. Taken together, we find that NK cells may balance the release of inflammatory factors in our body by transporting the information between the terminal vagal branches and macrophages, which is the mechanism that NK cells may exert antidepressant-like effects.
-
Neuronal networks can produce stable oscillations and synchrony that are under tight control yet flexible enough to rapidly switch between dynamical states. The pacemaker nucleus in the weakly electric fish comprises a network of electrically coupled neurons that fire synchronously at high frequency. This activity sets the timing for an oscillating electric organ discharge with the lowest cycle-to-cycle variability of all known biological oscillators. ⋯ These responses involve a variable increase in firing frequency and a prominent desynchronization of neurons that recovers within 5 oscillation cycles. Using a previously developed computational model of the pacemaker network, we show that the frequency changes and rapid resynchronization observed experimentally are most easily explained when model neurons are interconnected more densely and with higher coupling strengths than suggested by published data. We suggest that the pacemaker network achieves both stability and flexibility by balancing coupling strength with interconnectivity and that variation in these network features may provide a substrate for species-specific evolution of electrocommunication signals.
-
The amygdala is concerned with the emotional memory consolidation, and is known as a stress-vulnerable region of the brain. Slow network oscillation is considered to play roles in memory consolidation during sleep. We investigated the relationship between the sleep and oscillation in the basolateral nucleus (BL) of the amygdala, in which burst firing is preferentially observed during sleep and the slow inhibitory oscillation is recorded from projection neuron. ⋯ The spike threshold of interneurons was increased and the power of the periodic excitatory transmission was reduced in the SD rats. Moreover, a reduction in input resistance in projection neurons was observed in SD rats without significant difference in the excitability which was measured by the spike number induced by depolarizing currents. These results suggest that SD stress affects the network oscillatory property accompanied by changes of individual neuronal excitability and synaptic communications.