Neuroscience
-
Neurotrophic factors (NTFs) are a relevant group of secreted proteins that modulate growth, differentiation, repair, and survival of neurons, playing a role in the maintenance of the synaptic unions, dendrites, and axons and also being crucial for peripheral nervous system development and regulating plasticity in the adult central nervous system. On the other hand, insulin-like growth factor 1 (IGF-1) has been ascertained multiple beneficial actions in the brain: neuro-development, -protection, -genesis and plasticity. ⋯ Results show that the mere IGF-1 deficiency seems to be responsible for an altered expression of genes coding for neurotrophic factors (particularly ciliary neurotrophic factor and mesencephalic astrocyte-derived neurotrophic factor), their receptors and signaling pathways (specially RET). The presented findings support that IGF-1 deficiency might be involved in the establishment and progression of neurodegenerative disorders.
-
Cerebral edema in ischemic stroke can lead to increased intracranial pressure, reduced cerebral blood flow and neuronal death. Unfortunately, current therapies for cerebral edema are either ineffective or highly invasive. During the development of cytotoxic and subsequent ionic cerebral edema water enters the brain by moving across an intact blood brain barrier and through aquaporin-4 (AQP4) at astrocyte endfeet. ⋯ Additional functional assays were used to validate AQP4 inhibition and identified a promising structural series for medicinal chemistry. These efforts improved potency and revealed a compound we designated AER-270, N-[3,5-bis (trifluoromethyl)phenyl]-5-chloro-2-hydroxybenzamide. AER-270 and a prodrug with enhanced solubility, AER-271 2-{[3,5-Bis(trifluoromethyl) phenyl]carbamoyl}-4-chlorophenyl dihydrogen phosphate, improved neurological outcome and reduced swelling in two models of CNS injury complicated by cerebral edema: water intoxication and ischemic stroke modeled by middle cerebral artery occlusion.
-
Prepulse inhibition (PPI) can be modulated by both the Val158Met (rs4680) polymorphism of the Catechol-O-Methyltransferase (COMT) gene and the menstrual-cycle-related hormone fluctuations, each of which affects the subcortical/cortical dopamine metabolism. PPI can also be modulated by attention. The attentional modulation of PPI (AMPPI) is sensitive to psychoses. ⋯ However, the decreasing pattern was not overserved in either Met/Met-carrier or Met/Val-carrier participants. Thus, in healthy younger-adult females, PPIPSC and PPIPSS, but not the AMPPI, is vulnerable to changes of ovarian hormones, and the COMT Val158Met polymorphism also has a modulating effect on this menstrual-cycle-dependent PPI variation. In contrast, the AMPPI seems to be more steadily trait-based, less vulnerable to ovarian hormone fluctuations, and may be useful in assisting the diagnosis of schizophrenia in female adults.
-
Accumulating evidence relates finger gnosis (also called finger sense or finger gnosia), the ability to identify and individuate fingers, to cognitive processing, particularly numerical cognition. Multiple studies have shown that finger gnosis scores correlate with or predict numerical skills in children. Neuropsychological cases as well as magnetic stimulation studies have also shown that finger agnosia (defects in finger gnosis) often co-occurs with cognitive impairments, including agraphia and acalculia. ⋯ We also found sex differences in how GMV is associated with finger gnosis. While females showed a more distributed and extensive set of frontal and parietal clusters, males showed two striatal clusters. This study provides the first findings on structural brain features that correlate with finger gnosis.