Neuroscience
-
The pedunculopontine nucleus (PPN) shows altered electrophysiological and anatomic characteristics in Parkinson's disease (PD), but little is known about the effect of 6-hydroxydopamine (6-OHDA) lesion and levodopa (L-DOPA) therapy on the relationship between spike and local field potential (LFP) activities in the PPN and motor cortex. Aiming to investigate this, synchronous spike and LFP signals in the PPN and primary motor cortex (M1) were recorded. The spike-LFP relationship was evaluated using coherence analysis, phase-lock and spike-field coherence (SFC). ⋯ The significantly altered frequency bands varied across different neuron types and animal activity states. In addition, the altered coherence values between PPN spike and M1 LFP were refractory to long-term L-DOPA therapy although all other changes could be reversed by this drug treatment. All results provided evidence of the spike-LFP relationship between the PPN and M1 in PD, revealing some network mechanisms of the cortico-basal ganglia circuitry and PPN, which might be an underlying candidate for PD pathophysiology and therapy.
-
The subfornical organ (SFO) is forebrain sensory circumventricular organ, characterized by lack of a blood-brain barrier. Neurons of the SFO can detect circulating molecules such as peptide hormones and communicate this information to regulatory centers behind the blood-brain barrier, thus playing a critical role in homeostatic processes including regulation of energy balance, hydromineral balance and cardiovascular control. The SFO contains two subregions defined by neuronal expression of molecular markers: the dorsolateral peripheral or shell SFO (sSFO) neurons express calretinin, and the ventromedial core (cSFO) neurons express calbindin D28K. ⋯ This study used a gold nanoparticle-conjugated RNA fluorescent probe on dissociated SFO neuron cultures and patch clamp electrophysiology to characterize the intrinsic electrophysiological properties of cSFO and sSFO neurons. Our studies revealed that neurons originating from the core region exhibited significantly more action potential bursting, while neurons from non-core regions exhibited more tonic firing neurons, albeit at a higher overall frequency. The difference in activity is correlated with a more depolarized resting membrane potential and a higher density of voltage gated Na+ currents.
-
A common feature across neuropsychiatric disorders is inability to discontinue an action or thought once it has become detrimental. Reversal learning, a hallmark of executive control, requires plasticity within cortical, striatal and limbic circuits and is highly sensitive to disruption of N-methyl-D-aspartate receptor (NMDAR) function. In particular, selective deletion or antagonism of GluN2B containing NMDARs in cortical regions including the orbitofrontal cortex (OFC), promotes maladaptive perseveration. ⋯ Reversal impairment produced by corticohippocampal GluN2B deletion was paralleled by an aberrant increase in functional connectivity between the OFC and dS. These alterations in coordination were associated with alterations in local OFC and dS firing activity. These data demonstrate highly dynamic patterns of cortical and striatal activity concomitant with reversal learning, and reveal GluN2B as a molecular mechanism underpinning the timing of these processes.
-
The habenula (Hb) plays important roles in emotion-related behaviors. Besides receiving inputs from the limbic system and basal ganglia, Hb also gets inputs from multiple sensory modalities. Sensory responses of Hb neurons in zebrafish are asymmetrical: the left dorsal Hb and right dorsal Hb (dHb) preferentially respond to visual and olfactory stimuli, respectively, implying different functions of the left and right dHb. ⋯ Interestingly, this right-to-left asymmetry of olfactory responses converts into a ventral-to-dorsal pattern in the interpeduncular nucleus (IPN), a main downstream target of Hb. Combining behavior assay, we further found that genetic dysfunction or lesion of the R-dHb and its corresponding downstream ventral IPN (V-IPN) impair the food seeking-associated increase of swimming activity. Thus, our study indicates that the asymmetrical olfactory response in the R-dHb to V-IPN pathway plays an important role in food-seeking behavior of zebrafish larvae.
-
Directing differentiation of neural stem/progenitor cells (NSCs/NPCs) to produce functional neurons is one of the greatest challenges in regenerative medicine. Our previous paper has confirmed that electrical stimulation has a high efficiency of triggering neuronal differentiation by using isolated filum terminale (FT)-derived NPCs. To further clarify the intrinsic molecular mechanisms, protein-protein interaction (PPI) network analysis was applied to pinpoints novel hubs in electric field (EF)-induced neuronal differentiation. ⋯ The data showed that the expression level of Ascl1 was enhanced by electrical stimulation and positively correlated to EF strength. Moreover, we identified that the expression of Ascl1 positively regulated neuronal differentiation of NPCs and can be up-regulated by EF-stimulation through the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. Therefore, this study provides new insights into the role of Ascl1 and its relevant PI3K/Akt pathway in regulating of EF-induced neuronal differentiation and pointed out that continuous expression of Ascl1 in NPCs is required for EF-induced neuronal differentiation.