Neuroscience
-
The comparative roles of the human amygdala and orbitofrontal cortex in emotional processing are under substantial debate, supported prominently by invasive primate studies. Noninvasive studies in humans are restricted by the limitations of electro- and magneto-encephalographic methods, which are hampered by the closed-field architecture and deep location of these structures. Here we employ whole-brain functional magnetic resonance imaging at an effective sampling rate of 300 ms to define the latency of enhanced blood oxygen level dependent (BOLD) contrast within structures activated by emotionally evocative relative to neutral scenes, in an effort to assess the hypothesized primacy of amygdala-inferotemporal co-activity in human emotional perception, relative to orbitofrontal cortex. ⋯ Subcortical structures including the amygdala, locus coeruleus, and basal forebrain also showed reliably increased activity during emotional scene perception. The latency at which emotional BOLD signal enhancement varied considerably across structures, ranging from 2 to 6 seconds after scene onset. Though coarse, the spatiotemporal pattern of emotion-enhanced activity identified here is consistent with the idea that the amygdala and inferior temporal fusiform gyrus are the first regions to discriminate scene emotionality, which may then distribute this categorical information to other cortical and subcortical structures.
-
Astrocytes provide support for neurons, regulate metabolic processes, and influence neuronal communication in a variety of ways, including through the homeostatic regulation of glutamate. Following 2-h cocaine or methamphetamine self-administration (SA) and extinction, rodents display decreased levels of basal glutamate in the nucleus accumbens core (NAcore), which transitions to elevated glutamate levels during drug seeking. We hypothesized that, like cocaine, this glutamate 'overflow' during methamphetamine seeking arises via decreased expression of the astroglial glutamate transporter GLT-1, and withdrawal of perisynaptic astroglial processes (PAPs) from synapses. ⋯ In order to test the impact of astrocyte activation and the induction of glial glutamate release within the NAcore, we employed astrocyte-specific expression of designer receptors exclusively activated by designer drugs (DREADDs). We show here that acute activation of Gq-coupled DREADDs in this region inhibited cued methamphetamine seeking. Taken together, these data indicate that cued methamphetamine seeking following two-hour SA is not mediated by deficient glutamate clearance in the NAcore, yet can be inhibited by engaging NAcore astrocytes.
-
Profiling the Gene Expression and DNA Methylation in the Mouse Brain after Ischemic Preconditioning.
Ischemic preconditioning (IPC) is a phenomenon in which a short-term sublethal ischemic exposure induces tolerance to a subsequent lethal ischemic insult; however, the detailed mechanism underlying IPC-induced neuroprotection remains obscure. Here, we applied middle cerebral artery occlusion, a preconditioning ischemic insult mouse model, to investigate the molecular mechanism underlying cerebral IPC. RNA sequencing and whole-genome bisulfite sequencing were performed to explore the gene expression profile and DNA methylation changes after cerebral IPC treatment. ⋯ The involvement of several genes in IPC-induced neuroprotection was first reported. Genes induced by IPC, including Arid5a, Nptx2 and Stc2, demonstrated a neuroprotective effect against oxygen-glucose deprivation induced neurotoxicity in vitro. Thus, our findings provide new insights into IPC signaling pathways and offer a novel therapeutic strategy towards stroke.
-
Binge alcohol drinking is a well characterized consumption pattern related with drinking five or more alcoholic beverages during a short period of time followed by a non-drinking period. Several studies showed that this pattern of alcohol intake is becoming very popular among adolescents. However, little is known about the cellular mechanisms involved in ethanol toxicity under these conditions and if these negative changes could be extending to the adulthood. ⋯ Adolescent binge-like ethanol exposure reduced the expression of the mitochondrial respiration complexes, induced mitochondrial depolarization, increased mitochondrial calcium levels, and reduced ATP production in the adult hippocampus. Altogether, our results indicate that adolescence binge alcohol drinking affects the electron transport chain components expression resulting in mitochondrial failure and loss of calcium buffering in the adult hippocampus. Therefore, we reported for first time that adolescent binge-alcohol consumption has severe repercussions on mitochondrial bioenergetics during the adulthood; and that this is not a transitory change until the state of drunkenness disappears as previously believed.
-
Protracted radioiodine release may require repeated intake of potassium iodide (KI) to protect thyroid gland. It is well established that iodine excess inhibits transiently the thyroid function. As developing fetus depends on maternal thyroid hormones (TH) supply, more knowledge is needed about the plausible effects that repeated KI intake can cause in this sensitive population, especially that even subtle variation of maternal thyroid function may have persistent consequences on progeny brain processing. ⋯ Motor coordination was altered in KI-exposed male progeny. At the cerebellar level, we observed a decrease of mRNA expression of DCX (-42%) and RC3 (-85%); on the other hand, at the cortical level, mRNA expression of MBP (+71%), MOBP (+90%) and Kcna1 (+42%) was increased. To conclude, repeated KI prophylaxis is not adequate during pregnancy since it led to long-term irreversible neurotoxicity in the male progeny.