Neuroscience
-
Cerebral small vessel disease (CSVD) is not only a cause of vascular dementia (VD) but also a contributing factor to Alzheimer's disease (AD). The essential pathological feature of CSVD is the disruption of blood-brain barrier (BBB). Dysfunction of BBB due to degeneration of both endothelial cells and pericytes in capillaries leads to neuronal damage and progressive brain atrophy. ⋯ Restoration of BBB function via remodeling of microvasculature and inhibition of Aβ accumulation could inhibit progressive brain atrophy and lead to restore cognitive dysfunction. Gene expression analysis indicated that infused MSCs activates both transforming growth factor-β and angiopoietin 1 signaling pathways and promotes the remodeling of microvasculature. Thus, infused MSCs may represent a novel therapy for both VD and AD.
-
M1 muscarinic receptors have long been identified as a potential therapeutic target for the treatment of cognitive impairment in Alzheimer's disease (AD). Our previous study has shown that M1 receptors promote membrane insertion and synaptic delivery of AMPA receptor GluA1 subunit. In this study, we sought to determine whether activation of M1 receptor would rescue the cognitive impairment in AD model mice through modulation of GluA1 subunit. ⋯ Moreover, for 9-month-old APP/PS1 transgenic AD model mice, which may resemble the late AD, M1 receptor activation could not improve the cognitive impairment significantly. In addition, the enhancement of GluA1 expression and its phosphorylation at Ser845 were not observed in their hippocampi. Taken together, the study indicated that M1 receptor activation rescued the cognitive deficit through modulating the trafficking of GluA1-containing AMPA receptors and the therapeutics targeting M1 receptors should aim at mild AD or even pre-AD.
-
In the auditory system, distinct and reproducible transient activities responding to the onset of sound have long been the focus when characterizing the auditory cortex, i.e., tonotopic maps, subregions, and layer-specific representation. There is limited information on sustained activities because the rapid adaptation impairs reproducibility and the signal-to-noise ratio. We recently overcame this problem by focusing on neural synchrony and machine learning demonstrated that band-specific power and the phase locking value (PLV) represent sound information in a tonotopic and region-specific manner. ⋯ SLR achieved the highest discrimination performance in high-gamma activities in layers 4 and 5/6, higher than in layer 2/3, indicating poor sound representation in layer 2/3. Moreover, the recording sites that contributed to the discrimination in layers 4 and 5/6 had a characteristic frequency similar to the test frequency and were often located in the belt area, indicating tonotopic and region-specific representation. These results indicate that information processing of sustained activities may depend on high-gamma oscillators, i.e., cortical inhibitory interneurons, and reflects layer-specific thalamocortical and corticocortical neural circuits in the auditory system, which may contribute to associative information processing beyond sound frequency in auditory perception.
-
Defective cortical processing of visual stimuli and altered retinal function have been described in autism spectrum disorder (ASD) patients. In keeping with these findings, anatomical and functional defects have been found in the visual cortex and retina of mice bearing mutations for ASD-associated genes. Here we sought to investigate the anatomy and function of the adult retina of Engrailed 2 knockout (En2-/-) mice, a model for ASD. ⋯ In addition, En2-/- adult mice showed a significant reduction of photoreceptor (rhodopsin) and bipolar cell (Pcp2, PKCα) markers. Functional defects were also present in the retina of En2 mutants, as indicated by electroretinogram recordings showing a significant reduction in both a-wave and b-wave amplitude in En2-/- mice as compared to controls. These data show for the first time that anatomical and functional defects are present in the retina of the En2 ASD mouse model.
-
Rapid changes in the light-dark cycle cause circadian desynchronization between rhythms of spike-wave discharges (SWDs) and motor activity in genetic epileptic rats, and this is accompanied by an increase in epileptic activity. Given the close relationship between absence seizures and sleep-wake states, the present study assessed firstly a putative relationship between vigilance rhythms and SWDs during re-synchronization, and secondly sleep-wake patterns responsible for increased epileptic activity. Lastly, in a view of existing evidence that melatonin and its agonists accelerate re-synchronization, the effects of different doses of agomelatine upon the speed of re-synchronization of different sleep-wake states and SWDs were investigated. ⋯ Agomelatine showed neither an effect on sleep-wake parameters and SWDs, nor affected re-synchronization. The same speed of re-synchronization of SWDs and light slow-wave sleep suggests that both are controlled by a common circadian mechanism. The redistribution of SWDs and their increase in the light phase after the shift may be of importance for patients with absence epilepsy planning long trans-meridian flight across time zones.