Neuroscience
-
The ventrolateral periaqueductal gray matter (vlPAG) plays a critical role in the pathogenesis of migraine and few studies have shown that vlPAG might be involved in the pathophysiology of epilepsy. But its roles in epileptogenesis and comorbid relationship between migraine and epilepsy have never been reported. In this study, the impairments of vlPAG neuronal network during spontaneous recurrent seizure (SRS) development after status epilepticus (SE) were investigated, and the pain sensitivity as well as the SRS investigated after neurochemical lesion to vlPAG to determine the role of vlPAG in epileptogenesis and in migraine comorbidity with epilepsy. ⋯ On the other hand, neurochemical lesion to vlPAG enhanced frequency and duration of spontaneous seizure event and frequency of epileptiform inter-ictal spike discharges in electroencephalography (EEG), but decreased pain threshold in epileptic rats. This indicates an involvement of the pain regulating structure, vlPAG, in the pathogenesis of epilepsy. This may imply that vlPAG network alterations could be a possible underlying mechanism of the interactive comorbid relationship between epilepsy and migraine.
-
Perceptual selection can be guided by the contents of working memory (WM). Neuroimaging and neuropsychological data point to a role of a fronto-parietal and fronto-thalamic networks in WM guidance. Here we assessed the effect of transcranial direct current stimulation of the left dorsal frontal cortex (lDFC) in a combined WM/attention paradigm. ⋯ Notably, across two experiments we found that lDFC-tDCS modulated WM guidance of visual selection in the context of high processing loads in WM. No effects of tDCS were observed in WM accuracy. These findings suggest that the role of the left dorsal frontal cortex in WM guidance is associated with selective attentional control rather than mnemonic processing.
-
It is well established that the primary motor cortex (M1) plays a significant role in motor learning in healthy humans. It is unclear, however, whether mechanisms of motor learning include M1 oscillatory activity. In this study, we aimed to test whether M1 oscillations, entrained by transcranial Alternating Current Stimulation (tACS) at motor resonant frequencies, have any effect on motor acquisition and retention during a rapid learning task, as assessed by kinematic analysis. ⋯ At the end of training, corticospinal excitability had similarly increased in the three sessions. The results are compatible with the hypothesis that entrainment of the two major motor resonant rhythms through tACS over M1 has different effects on motor learning in healthy humans. The effects, however, were unrelated to corticospinal excitability changes.
-
Silent angina is a critical phenomenon in the clinic and is more commonly associated with women patients suffering from myocardial ischemia. Its underlying cause remains mysterious in medicine. With our recent discovery of female-specific Ah-type baroreceptor neurons (BRNs), we hypothesize that cardiac analgesia is due to the direct activation of Ah-type BRNs by elevated levels of circulating serotonin (5-HT) myocardial infarction (MI) patients. ⋯ Although the tail-flick reflex and mean arterial pressure were dramatically reduced in female MI rats with elevated serum 5-HT, intrapericardial capsaicin-evoked muscular discharges were significantly inhibited in comparing with those of males, which were mimicked by microinjection of 5-HT or SR57227A into the nodose. Ah-type BRNs displayed robust inward currents at lower concentrations of 5-HT than the C-type or the A-type, with significantly increased expression and cellular distribution of 5-HT3AR but not 5-HT3BR compared to the A- and C-types. Activation of 5-HT3AR in Ah-type BRNs by 5-HT contributes significantly to cardiac analgesia, which may suggest the pathogenic condition that silent angina occurs mainly in female patients.
-
Physical exercise is now generally considered as a strategy to maintain cognitive abilities and to prevent age-related cognitive decline. In the present study, Wistar rats were subjected to moderate intensity treadmill exercise for 6 months prior to sacrifice at 12-, 24- and 32-month of age. This chronic physical intervention was tested on motility in the Open field (OF). ⋯ Massive ChAT fiber aberrations in all investigated areas which developed in senescence were clearly attenuated by exercise. The results suggest that moderate intensity chronic exercise in the rat is especially beneficial in advanced age. In conclusion, chronic exercise attenuates the age-related decline in cognitive and motor behaviors as well as age-related cholinergic fiber reduction, reduces malformations of cholinergic forebrain innervation.