Neuroscience
-
Response inhibition is a central aspect of cognitive control. Usually, response inhibition is examined using information from a single sensory modality. Yet, evidence suggests that conflicts between information from different modalities affect response inhibition. ⋯ This also explains why less intense braking processes (reflected by IFG activity) are still able to maintain a reasonable response inhibition performance level. It can be concluded that the tactile and visual domains do not only differ in regard to their efficiency to trigger response inhibition processes but also in their susceptibility to interference while informing inhibitory control. Clinical implications are discussed.
-
The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of ionotropic glutamate receptors mediates most fast excitatory transmission. Glutamate binding to AMPA receptors (AMPARs) causes most AMPARs to rapidly and completely desensitize, and their desensitization kinetics influence synaptic timing. Thus, factors that alter AMPAR desensitization influence synaptic transmission. ⋯ CTZ completely blocked potentiation by zinc but had no significant effect on inhibition. There was a significant negative correlation between the degree of potentiation of AMPAR-mediated currents by 100 μM zinc and a quantitative measure of the degree of AMPAR desensitization (the steady-state to peak [S:P] ratio of AMPA-evoked currents), but no correlation between the degree of current inhibition by 1 mM zinc and the S:P ratio. Together, these findings suggest that low zinc concentrations potentiate rat OB AMPARs by decreasing receptor desensitization, but that the inhibitory effects of higher zinc concentrations are mediated by a separate mechanism.
-
Excitotoxicity plays an important role in the pathogenesis of developing brain injury. The neuropeptide secretoneurin (SN) has neuroprotective potential. The aim of this study was to investigate SN plasma concentrations following excitotoxicity and to evaluate the effect of SN as therapeutic strategy in excitotoxic newborn brain injury. ⋯ Administration of SN did not positively affect lesion size, apoptotic cell death, microglial cell activation or cell proliferation. To conclude, endogenous SN plasma levels are lower in newborn mice subjected to an excitotoxic insult than in healthy controls. Supplementation with SN in various treatment regimens is not neuroprotective in the experimental animal model of excitotoxic newborn brain injury.
-
Alzheimer's disease (AD) is the neurodegenerative disorder with no cure. Recent studies suggest that dysregulated postsynaptic store-operated calcium entry (nSOCE) may underlie mushroom spine loss that is related to AD pathology. ⋯ We further established that nSOCE antagonist EVP4593 decreases PSEN1ΔE9-mediated nSOCE upregulation and rescues mushroom spines in PSEN1ΔE9-expressing neurons. Obtained results further highlight the connection between dysregulation of endoplasmic reticulum calcium signaling and synaptic loss in AD and suggest that calcium signaling modulators may have a therapeutic value for treatment of memory loss in AD.
-
The contribution of Dopamine (DA) to minimal hepatic encephalopathy (MHE) has been demonstrated. However, recent studies have revealed that cholesterol (CHO) treatment substantially increased the risk of dementia. The objectives of this study were to investigate whether CHO was induced by DA overload and its involvement in DA-induced cognitive impairment in MHE. ⋯ Memory impairments were observed in MHE/DA-treated rats, which were partially rescued by atorvastatin (ATVS) treatment, confirming the involvement of CHO burden in vivo. Overall, our study suggests that DA overload triggers obvious CHO production from astrocytes. Excessive CHO in turn triggered neurons to secrete abundant DA and DA burden in combination with CHO overload elicit the cognitive decline and memory loss via PPARγ/ERK/CREB pathway in MHE.