Neuroscience
-
Explanations of memory-guided navigation in rodents typically suggest that cue- and place-based navigations are independent aspects of behavior and neurobiology. The results of many experiments show that hippocampal damage causes both anterograde and retrograde amnesia (AA; RA) for place memory, but only RA for cue memory. In the present experiments, we used a concurrent cue-place water task (CWT) to study the effects of hippocampal damage before or after training on cue- and place-guided navigation, and how cue and place memory interact in damaged and control rats. ⋯ By contrast to these anterograde effects, damage made after training causes RA for cue choice accuracy and latency to navigate to the correct cue. In addition, the extent of hippocampal damage predicted impairments in choice accuracy when lesions were made after training. These data extend previous work on the role of the hippocampus in cue and place memory-guided navigation, and show that the hippocampus plays an important role in both aspects of memory and navigation when present during the learning experience.
-
Since the landmark discovery that point mutations in the α-synuclein gene (SNCA) cause familial Parkinson's disease (PD) more than 2 decades ago, extensive research has been conducted to unravel the molecular and cellular mechanisms by which α-synuclein drives PD pathogenesis resulting in selective neurodegeneration of vulnerable neuronal populations. Current interest focuses on the identification of relevant toxic α-synuclein conformers and their interaction with basic cellular functions. ⋯ In this short review, we focus on cell-specific responses to α-synuclein with a focus on the toxic conformers of α-synuclein. We will not discuss more general cellular death pathways, which have been comprehensively covered by a number of elegant recent reviews.
-
The chronic neuropathic pain-associated psychiatric disorders have seriously disturbed the quality of patients' life, such as depression and anxiety. Neuroinflammation in the hippocampus plays an important role in the neuropathic pain-associated depressive and anxiety disorders, but the underlying mechanism has not been thoroughly elucidated to date. The Nod-like receptor protein (NLRP)-1 inflammasome, which controls the production of pro-inflammatory cytokines, was broadly involved in the neuroinflammation-related diseases. ⋯ Functional inhibition of PKR suppressed the NLRP1 inflammasome activation and effectively attenuated the CCI-induced depression-like behaviors. These results indicate that the hippocampal PKR/NLRP1 inflammasome pathway play an important role in the development of the depressive behaviors after chronic neuropathic pain. Thus, interrupting this pathway might provide a novel therapeutic strategy for neuropathic pain-associated depressive disorders.
-
Stroke is a devastating brain disorder. The pathophysiology of stroke is associated with an impaired excitation-inhibition balance in the area that surrounds the infarct core after the insult, the peri-infarct zone. Here we exposed slices from adult mouse prefrontal cortex to oxygen-glucose deprivation and reoxygenation (OGD-RO) to study ischemia-induced changes in the activity of excitatory pyramidal neurons and inhibitory parvalbumin (PV)-positive interneurons. ⋯ Disynaptic inhibitory postsynaptic currents (dIPSCs) in pyramidal neurons produced predominantly by PV-positive interneurons were reduced by OGD-RO. Following OGD-RO, dendrites of PV-positive interneurons exhibited more pathological beading than those of pyramidal neurons. Our data support the hypothesis that the differential vulnerability to ischemia-like conditions of excitatory and inhibitory neurons leads to the altered excitation-inhibition balance associated with stroke pathophysiology.
-
Ghrelin is an important orexigenic brain-gut hormone that regulates feeding, metabolism and glucose homeostasis in human and rodents at multiple levels. Ghrelin functions by binding to its receptor, the growth hormone secretagogue receptor 1a (GHS-R1a), which is widely expressed both inside and outside of the brain. Both acute and chronic calorie restrictions (CRs) were reported to increase endogenous ghrelin levels and lead to beneficial effects on brain functions, including anti-anxiety effects, anti-depressive effects, and memory improvement. ⋯ This effect was abolished by a GHS-R1a antagonist, suggesting a GHS-R1a dependent mechanism. Ad-libitum refeeding masked behavioral responses induced by acute CR in both Ghsr-/- and Ghsr+/+ mice. Altogether, our findings indicate that acute and chronic CRs mitigate anxiety- and despair-like behaviors with different physiological mechanisms, with the former being dependent on endogenous ghrelin release and GHS-R1a signaling, while the latter may not be.