Neuroscience
-
Hippocampal oscillations, particularly theta (6-12 Hz) and gamma (30-90 Hz) frequency bands, play an important role in several cognitive functions. Theta and gamma oscillations show cross-frequency coupling (CFC), wherein the phase of theta rhythm modulates the amplitude of the gamma oscillation, and this CFC is believed to reflect cell assembly dynamics in cognitive processes. Previous studies have reported that CFC strength correlates with the learning process. ⋯ The enhanced coupling between theta and high-gamma oscillations (60-90 Hz) changed during the late stage of learning. In contrast, the coupling between theta and low-gamma oscillations (30-60 Hz) did not show any changes during learning. These results suggest that the coupling between theta and gamma bands occurs during rule learning and that high- and low-gamma bands play different roles in rule switching.
-
Since the landmark discovery that point mutations in the α-synuclein gene (SNCA) cause familial Parkinson's disease (PD) more than 2 decades ago, extensive research has been conducted to unravel the molecular and cellular mechanisms by which α-synuclein drives PD pathogenesis resulting in selective neurodegeneration of vulnerable neuronal populations. Current interest focuses on the identification of relevant toxic α-synuclein conformers and their interaction with basic cellular functions. ⋯ In this short review, we focus on cell-specific responses to α-synuclein with a focus on the toxic conformers of α-synuclein. We will not discuss more general cellular death pathways, which have been comprehensively covered by a number of elegant recent reviews.
-
Small-for-gestational age (SGA) human newborns have an increased risk of hyperphagia and obesity, as well as a spectrum of neurologic and neurobehavioral abnormalities. We have shown that the SGA hypothalamic (appetite regulatory site) neuroprogenitor cells (NPCs) exhibit reduced proliferation and neuronal differentiation. DNA methylation (DNA methyltransferase; DNMT1) regulates neurogenesis by maintaining NPC proliferation and suppressing premature differentiation. ⋯ In vivo data replicated these findings. In SGA offspring, impaired neurogenesis is epigenetically mediated, in part, via reduction in DNMT1 expression and suppression of Hes1 resulting in NPC differentiation. It is likely that the maturation of regions beyond the hypothalamus (e.g., cerebral cortex, hippocampus) may be impacted, contributing to poor cognitive and neurobehavioral competency in SGA offspring.
-
The chronic neuropathic pain-associated psychiatric disorders have seriously disturbed the quality of patients' life, such as depression and anxiety. Neuroinflammation in the hippocampus plays an important role in the neuropathic pain-associated depressive and anxiety disorders, but the underlying mechanism has not been thoroughly elucidated to date. The Nod-like receptor protein (NLRP)-1 inflammasome, which controls the production of pro-inflammatory cytokines, was broadly involved in the neuroinflammation-related diseases. ⋯ Functional inhibition of PKR suppressed the NLRP1 inflammasome activation and effectively attenuated the CCI-induced depression-like behaviors. These results indicate that the hippocampal PKR/NLRP1 inflammasome pathway play an important role in the development of the depressive behaviors after chronic neuropathic pain. Thus, interrupting this pathway might provide a novel therapeutic strategy for neuropathic pain-associated depressive disorders.
-
To foster performance across all levels of sports practice, physical training has been integrated with various mental training practices. Recently, an integrative approach to neurocognitive enhancement tried to combine the strengths of mental practices (i.e. mindfulness) and of training with neurofeedback devices. Based on previous validation studies showing the effect of a combined mindfulness-neurofeedback program on neurocognitive efficiency and stress/anxiety levels, we aimed at testing the feasibility and potential of that intensive combined program for improving psychological well-being and attention regulation in sport contexts. 50 participants (sportspeople and volunteers not regularly involved in sports) were divided into groups undergoing experimental and active control training programs. ⋯ We have also observed a general reduction of perceived stress and increased ability to keep a non-evaluative stance. Findings extend available observations on cognitive and neural effects of combined mindfulness-neurofeedback practice by showing that it is possible to observe training effects even after a limited period of practice among sportspeople. Such early training effects might mirror optimized implicit learning curves due to peculiar sensitivity to bodily signals and awareness.