Neuroscience
-
Our aim was to identify the longitudinal changes in gray matter volume (GMV) and secondary alterations of structural covariance after pontine stroke (PS). Structural MRI and behavioral scores were obtained at 1 week, 1 month, 3 months, 6 months in 11 patients with PS. Twenty healthy subjects underwent the same examination only once. ⋯ Based on the CBE Crus II_IL and CBE Crus I_CL as seed regions, structural covariance analysis revealed that there were more positively and negatively correlated brain regions in PS group, mainly distributed in the bilateral prefrontal lobe, parietal lobe, temporal lobe, paralimbic system and cerebellum. In addition, PS group showed more additional correlations between these covariant brain regions, and the changes of GMV in these regions were correlated with behavioral scores related to motor and cognitive functions. These findings indicate that PS could lead to significant GMV atrophy in the bilateral cerebellar posterior lobe at the early stage, accompanied by anomalous structural covariance patterns with more covariant brain regions and additional structural connectivity, which may provide useful information for understanding the neurobiological mechanisms of behavioral recovery after PS.
-
The integrity of the perirhinal cortex (PRh) is essential for object recognition memory (ORM) function, and damage to this brain area in animals and humans induces irreversible ORM deficits. Here, we show that activation of area V2, a brain area interconnected with brain circuits of ventral stream and medial temporal lobe that sustain ORM, by expression of regulator of G-protein signaling 14 of 414 amino acids (RGS14414) restored ORM in memory-deficient PRh-lesioned rats and nonhuman primates. ⋯ Thus, RGS14414-mediated activation of area V2 has therapeutic relevance in the recovery of recognition memory, a type of memory that is primarily affected in patients or individuals with symptoms of memory dysfunction. These findings suggest that area V2 modulates the processing of memory-related information through activation of interconnected brain circuits formed by the participation of distinct brain areas.
-
The purpose of the present research was to examine whether different music settings could influence one's cognitive function - particularly memory. The examined sample consisted of 168 college students with a male:female ratio of 1:2.2. The participants were asked to complete a short-term memory test regarding word recollection while exposed to auditory stimuli. ⋯ Music as an external stimulus was also found to affect the recall process significantly (0.02 < p < 0.04). Gender did not present any statistically significant association with specific music genres although, based on the limitations of this study, findings are in need of further exploration. The results of the present study may direct forthcoming research to address this issue further by examining additional variables as well.
-
Binge drinking is a frequent pattern of ethanol consumption within Alcohol Use Disorders (AUDs). Binge-like ethanol exposure increases Poly(ADP-ribose) polymerase (PARP) expression and activity. PARP enzymes have been implicated in addiction and serve multiple roles in the cell, including gene expression regulation. ⋯ In our model, alcohol binge drinking induced specific alterations in the PFC expression of genes potentially involved in addiction. Pharmacological PARP inhibition proved effective in reversing these changes and preventing further alcohol consumption. Our results suggest an involvement of ethanol-induced PARP1 in reinforcing binge-like addictive behavior.
-
Neuroinflammation contributes to neuronal death in cerebral ischemia. Urolithin A (UA), a gut microbial metabolite of ellagic acid, has emerged as a potential anti-inflammatory agent. However, its roles and precise mechanisms in stroke remain unknown. ⋯ We also found that UA attenuated apoptosis by regulating apoptotic-related proteins. Meanwhile, UA treatment inhibited glial activation via affecting inflammatory signaling pathways, specifically by enhancing cerebral AMPK and IκBa activation while decreasing the activation of Akt, P65NFκB, ERK, JNK, and P38MAPK. Our findings reveal a key role of UA against ischemic stroke through modulating apoptosis and neuroinflammation in mice.