Neuroscience
-
Spinal cord injury (SCI) is a devastating neurological event that results in incomplete or complete loss of voluntary motor and sensory function. Until recently, there has been no effective curative strategy for SCI. Our previous study showed that microRNA (miR)-126 promoted angiogenesis and attenuated inflammation after SCI; however, the effect of miR-126-based treatment is limited because of the low efficiency of miR delivery in vivo. ⋯ In vitro, we observed that exosomes derived from miR-126-modified MSCs promoted the angiogenesis and migration of human umbilical venous endothelial cells (HUVECs) by inhibiting the expression of Sprouty-related EVH1 domain-containing protein 1 (SPRED1) and phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2). In conclusion, our study demonstrated that exosomes derived from MSCs transfected with miR-126 may promote angiogenesis and neurogenesis, inhibit apoptosis and promote functional recovery after SCI. These findings suggest that exosomes derived from miR-126-modified MSCs may serve as a novel potential therapeutic strategy for treating SCI.
-
Editorial Comment
Visual Cortex Rewiring in Retinitis Pigmentosa: Plasticity is Preserved.
-
Thermosensitive transient receptor potential vanilloid (TRPV) channels are widely expressed in the brain and known to profoundly influence Ca2+-signaling, neurotransmitter release and behavior. While these channels are expressed in the cerebellum, neuronal firing and hyperactivity/reflexes seem associated with cerebellar temperature modulation. However, the distribution and functional significance of TRPV-equipped elements in the cerebellum has remained unexplored. ⋯ Compared to controls, rats injected with TRPV3 inhibitor significantly reduced the stride length (P < 0.001), locomotor activity (P < 0.001), and rotarod retention time (P < 0.001), but increased footprints length (P < 0.01) and escape latency (P < 0001). TRPV3-agonist treatment, however, had no effect on these behaviors. We suggest that TRPV3 in Purkinje neurons may serve as novel molecular component for Ca2+-signaling and motor coordination function of the cerebellum.
-
Excessive dietary fat intake is considered a great risk factor for metabolic disorders as well as cognitive dysfunction. However, the potential mechanisms underlying the effects of a high-fat diet (HFD) on the brain remain rather obscure. The purpose of this study was to address how early exposure to HFD induces biochemical changes in different brain regions and affects short- and long-term memory. ⋯ The effect of HFD on the brain was also assessed by electrophysiology, which detected a gradual decrease in long-term potentiation in the CA1 region of the hippocampus. The abnormal expression of proteins associated with synaptic function, e.g. synaptophysin, CaMKII, CaMKIV, calcineurin A, ERK and c-fos, was observed in the hippocampus in response to HFD. These results indicate that HFD elicits rapid biochemical and neurological abnormalities in the hippocampus that contribute to cognitive defects and are potentially connected to the HFD-induced suppression of brain activity.