Neuroscience
-
The administration of glucocorticoids (GCs) for the treatment of traumatic brain injury (TBI) is controversial. Both protective and deleterious effects of GCs on the brain have been reported in previous studies, while the mechanisms are unclear. Most experimental studies have reported glucocorticoid receptor (GR)-mediated deleterious effects after TBI. ⋯ Fludrocortisone treatment significantly increased both the expression and activation of MRs, reduced the number of apoptotic neurons and cell loss in the ipsilateral hippocampus, and subsequently improved spatial memory. Its protective effects were counteracted by the MR antagonist spironolactone. The results suggest that adequate expression and activation of MRs is crucial for the survival of neurons after TBI and that fludrocortisone protects hippocampal neurons via promoting MR expression and activation.
-
Randomized Controlled Trial
Effects of Vortioxetine and Escitalopram on Electroencephalographic Recordings - A Randomized, Crossover Trial in Healthy Males.
The antidepressant drug vortioxetine has a multimodal action modulating neurotransmission through inhibition of the serotonin transporter and modulation of serotonin receptors. Vortioxetine has also been shown to alleviate cognitive symptoms in preclinical studies and in patients with depression. However, it is largely unclear how vortioxetine affects the brain processing in humans. ⋯ Although the global EEG changes were comparable between vortioxetine and escitalopram, subtle differences between treatment effects on the EEG in terms of effect size and regional distribution of the EEG changes were apparent. To our knowledge, the current results are the first data on how vortioxetine affects EEG in humans. The present study calls for further investigations addressing the possible electrophysiological and cognitive effects of vortioxetine.
-
Excessive dietary fat intake is considered a great risk factor for metabolic disorders as well as cognitive dysfunction. However, the potential mechanisms underlying the effects of a high-fat diet (HFD) on the brain remain rather obscure. The purpose of this study was to address how early exposure to HFD induces biochemical changes in different brain regions and affects short- and long-term memory. ⋯ The effect of HFD on the brain was also assessed by electrophysiology, which detected a gradual decrease in long-term potentiation in the CA1 region of the hippocampus. The abnormal expression of proteins associated with synaptic function, e.g. synaptophysin, CaMKII, CaMKIV, calcineurin A, ERK and c-fos, was observed in the hippocampus in response to HFD. These results indicate that HFD elicits rapid biochemical and neurological abnormalities in the hippocampus that contribute to cognitive defects and are potentially connected to the HFD-induced suppression of brain activity.
-
Thermosensitive transient receptor potential vanilloid (TRPV) channels are widely expressed in the brain and known to profoundly influence Ca2+-signaling, neurotransmitter release and behavior. While these channels are expressed in the cerebellum, neuronal firing and hyperactivity/reflexes seem associated with cerebellar temperature modulation. However, the distribution and functional significance of TRPV-equipped elements in the cerebellum has remained unexplored. ⋯ Compared to controls, rats injected with TRPV3 inhibitor significantly reduced the stride length (P < 0.001), locomotor activity (P < 0.001), and rotarod retention time (P < 0.001), but increased footprints length (P < 0.01) and escape latency (P < 0001). TRPV3-agonist treatment, however, had no effect on these behaviors. We suggest that TRPV3 in Purkinje neurons may serve as novel molecular component for Ca2+-signaling and motor coordination function of the cerebellum.
-
Dopamine is a neurotransmitter crucial for motor, motivational, and reward-related functions. Our aim was to determine the effect of a palatable maternal diet on the transcriptional regulation of dopaminergic-related genes during perinatal development of rat offspring. For that, female offspring from dams fed with a control (CON) or a cafeteria (CAF) diet were sacrificed on embryonic day 21 (E21) and postnatal day 10 (PND10). ⋯ In NAc, maternal CAF diet reduced DRD1, DRD2 and DAT expression in the offspring at PND10, although alternations in the methylation patterns were only detected in DAT promoter. These results show the importance of maternal nutrition and provide novel insights into the mechanisms through which maternal junk-food feeding can affect reward system during development and early postnatal life. Particularly important is the expression decline of DRD2 given its physiological implication in obesity and addiction.