Neuroscience
-
The administration of glucocorticoids (GCs) for the treatment of traumatic brain injury (TBI) is controversial. Both protective and deleterious effects of GCs on the brain have been reported in previous studies, while the mechanisms are unclear. Most experimental studies have reported glucocorticoid receptor (GR)-mediated deleterious effects after TBI. ⋯ Fludrocortisone treatment significantly increased both the expression and activation of MRs, reduced the number of apoptotic neurons and cell loss in the ipsilateral hippocampus, and subsequently improved spatial memory. Its protective effects were counteracted by the MR antagonist spironolactone. The results suggest that adequate expression and activation of MRs is crucial for the survival of neurons after TBI and that fludrocortisone protects hippocampal neurons via promoting MR expression and activation.
-
Patients with heart failure (HF) are more susceptible to cognitive impairment, but the mechanism is still unclear. This study aimed to observe the dynamic changes in brain glucose metabolism and neuronal structure in different stages of HF. An HF rat model was established by ligating the anterior descending branch of the left coronary artery. ⋯ Rats with AHF were in a compensatory state for increased glucose metabolism and slight neuronal damage. As a result, no significant cognitive impairment was observed. However, rats with CHF had significantly decreased cerebral glucose metabolism and neuronal degeneration, contributing to the cognitive function after HF.
-
The number of patients suffering from dementia due to Alzheimer's disease (AD) is constantly rising worldwide. This has accordingly resulted in huge burdens on the health systems and involved families. Lack of profound understanding of neural networking in normal brain and their interruption in AD makes the treatment of this neurodegenerative multifaceted disease a challenging issue. ⋯ Application of the graph theoretical analysis in the brain imaging was reviewed, depicting the relations between brain structure and function, without diving into mathematical details. Moreover, differential rate equations were briefly articulated, emphasizing the potential use of these equations in simplifying complex processes in relevance to pathologies of AD. Comprehensive insights were given into the AD progression from neural networks perspective, which may lead us towards potential strategies for early diagnosis and effective treatment of AD.
-
Review
The Interaction Between Contactin and Amyloid Precursor Protein and Its Role in Alzheimer's Disease.
Alzheimer's disease (AD) is a debilitating disease and the most common cause of dementia. As the world population ages even modest advances in therapies and preventative strategies would be of benefit. ⋯ APP is an integral membrane protein which interacts with members of the Contactin family of proteins. Here we review recent progresses in the field and discuss the physiological importance of APP-Contactin interaction, as well as their roles and contributions in the pathophysiology of AD.
-
Dopamine is a neurotransmitter crucial for motor, motivational, and reward-related functions. Our aim was to determine the effect of a palatable maternal diet on the transcriptional regulation of dopaminergic-related genes during perinatal development of rat offspring. For that, female offspring from dams fed with a control (CON) or a cafeteria (CAF) diet were sacrificed on embryonic day 21 (E21) and postnatal day 10 (PND10). ⋯ In NAc, maternal CAF diet reduced DRD1, DRD2 and DAT expression in the offspring at PND10, although alternations in the methylation patterns were only detected in DAT promoter. These results show the importance of maternal nutrition and provide novel insights into the mechanisms through which maternal junk-food feeding can affect reward system during development and early postnatal life. Particularly important is the expression decline of DRD2 given its physiological implication in obesity and addiction.