Neuroscience
-
Teriflunomide has been reported to inhibit microglial activation in experimental models of traumatic brain injury. However, its roles in ischemic stroke and underlying mechanisms of action are still undiscovered. In this study, we investigated the effects of teriflunomide on brain edema, neurologic deficits, infarct volume, neuroinflammation, blood-brain barrier (BBB) permeability, and neurogenesis in a mouse model of transient middle cerebral artery occlusion (tMCAO). tMCAO mice treated with teriflunomide showed lower brain water content on day 3, milder neurologic deficits and smaller infarct volume on day 7 than those treated with vehicle. ⋯ Moreover, teriflunomide reduced the loss of zonula occludens-1 (ZO-1) and occludin. Finally, teriflunomide significantly upregulated the number of 5-bromo-20-deoxyuridine (BrdU)/doublecortin (DCX)-positive cells and expression of mammalian achaete-scute homolog 1 (Mash1), DCX and Pbx1 in subventricular zone (SVZ) on day 7 after stroke. Our results indicate that teriflunomide exhibits protective roles in ischemic stroke by inhibiting neuroinflammation, alleviating BBB disruption and enhancing neurogenesis.
-
Kainate receptors (KARs) are glutamate receptors with ionotropic and metabotropic activity composed of the GluK1-GluK5 subunits. We previously reported that KARs modulate excitatory and inhibitory transmission in the olfactory bulb (OB). Zinc, which is highly concentrated in the OB, also appears to modulate OB synaptic transmission via actions at other ionotropic glutamate receptors (i.e., AMPA, NMDA). ⋯ It is also of potential importance given our previously reported molecular data suggesting that OB neurons express relatively high levels of GluK1 and GluK2. Our present findings suggest that a physiologically relevant concentration of zinc modulates KARs expressed by M/T cells. As M/T cells are targets of zinc-containing olfactory sensory neurons, synaptically released zinc may influence odor information-encoding synaptic circuits in the OB via actions at KARs.
-
Early life experiences play a vital role in contributing to healthy brain development. Adverse experiences have a lasting impact on the prefrontal cortex (PFC) and basolateral amygdala (BLA), brain regions associated with emotion regulation. Early life adversity via maternal separation (MS) has sex-specific effects on expression of parvalbumin (PV), which is expressed in fast-spiking GABAergic interneurons that are preferentially enwrapped by perineuronal nets (PNNs). ⋯ Our results confirm past reports that PFC PNNs form gradually throughout development; however, PNN density plateaus in adolescence, while intensity continues to increase into adulthood. Importantly, MS delays PNN formation in the prelimbic PFC and results in sex-specific aberrations in PNN structural integrity that do not appear until adulthood. The present findings reveal sex-, age-, and region-specific effects of early life adversity on PNN and PV maturation, implicating neuroplastic alterations following early life adversity that may be associated with sex differences in psychopathology and resilience.