Neuroscience
-
The causal connections among small-scale regions based on resting-state fMRI data have been extensively studied and a lot of achievements have been demonstrated. However, the causal connection among large-scale regions was seldom discussed. In this paper, we applied global Granger causality analysis to construct the causal connections in the whole-brain network among 103 healthy subjects (33 M/66F, ages 20-23) based on a resting-state fMRI dataset. ⋯ There were 817 directed edges identified as significant among the 8010 possible causal connections; seven driving hubs and ten driven hubs were identified in the whole-brain network. In CEN, dorsolateral prefrontal cortex (DlPFC) and superior parietal cortex (SPC) were the driven and driving hubs, respectively; in DMN, they were posterior cingulate cortex (PCC) and medial prefrontal cortex (MPFC); in DAN, they were frontal eye fields (FEF) and intraparietal sulcus (IPS); and in SN, they were frontoinsular cortex (FIC) and medial frontal cortex (MFC). These findings may provide insights into our understanding of human brain function mechanisms and the diagnosis of brain diseases.
-
The neural mechanisms associated with the limited capacity of working memory (WM) has long been studied, but it is still unclear which neural regions are associated with the precision of visual WM. Here, an orientation recall task for estimating the trial-wise precision of visual WM was performed and then repeated two weeks later in an fMRI scanner. Results showed that activity in frontal and parietal regions during WM maintenance scaled with WM load, but not with the precision of WM (i.e., recall error in radians). ⋯ Interestingly, a region within the prefrontal cortex, the inferior frontal junction (IFJ), exhibited greater functional connectivity with LOC when the WM load increased. Together, our findings provide unique evidence that the LOC supports visual WM precision, while communication between the IFJ and LOC varies based on WM load demands. These results suggest an intriguing possibility that distinct neural mechanisms may be associated with general content (load) or detailed information (precision) of WM.
-
Associations between Turning Characteristics and Corticospinal Inhibition in Young and Older Adults.
The effects of aging are multifaceted including deleterious changes to the structure and function of the nervous system which often results in reduced mobility and quality of life. Turning while walking (dynamic) and in-place (stable) are ubiquitous aspects of mobility and have substantial consequences if performed poorly. Further, turning is thought to require higher cortical control compared to bouts of straight-ahead walking. ⋯ Finally, all associations between corticospinal inhibition and turning performance were specific to the right hemisphere, reflecting that those OA who maintained high levels of inhibition performed turning similar to their younger counterparts. These results compliment the right hemisphere model of aging and lateralization specification of cortically regulated temporal measures of dynamic movement. While additional investigations are required, these pilot findings provide an additional understanding as to the neural control of dynamic movements.
-
Thioredoxin family proteins are key modulators of cellular redox regulation and have been linked to several physiological functions, including the cellular response to hypoxia-ischemia. During perinatal hypoxia-ischemia (PHI), the central nervous system is subjected to a fast decrease in O2 and nutrients with a subsequent reoxygenation that ultimately leads to the production of reactive species impairing physiological redox signaling. Particularly, the retina is one of the most affected tissues, due to its high oxygen consumption and exposure to light. ⋯ Knock-down of Trx1 in ARPE-19 cells affected cell morphology, proliferation and the levels of specific differentiation markers. Administration of recombinant Trx1 decreased astrogliosis and improved delayed neurodevelopment in animals exposed to PHI. Taken together, our results suggest therapeutical implications for Trx1 in retinal damage induced by hypoxia-ischemia during birth.
-
Motor expertise has recently been associated with differences in domain-general cognition. Studies using averaged neurophysiological signals (e.g., event-related potentials) have shown varying degree of expertise-related differences in neural activity. As a result, the precise mechanisms underlying these differences remain to be described. ⋯ The interceptive sport players showed superior behavioral performance overall on the task relative to the static sport players. Although both groups exhibited greater sample entropy across most time scales in high-conflict relative to low-conflict trials over the parietal site, this effect was only evident at coarser time scales over the midfrontal site for the interceptive sport players. Together, our results suggest that individual differences in motor expertise may be associated with difference in information-processing capacity and information integration during cognitive processing, as demonstrated by differential cognitive modulation of brain signal variability.