Neuroscience
-
Previous studies have identified the ventral and dorsal brain regions that respectively support semantic and non-semantic phonological access. Nevertheless, the specific role of the left occipitotemporal cortex (lOTC) in the two pathways of phonological access is ambiguous. To address that question, the present study compared word reading in Chinese (presumably relying on the semantic pathway) with that in English (presumably relying on the non-semantic pathway). ⋯ Specifically, the anterior lOTC showed greater activation for Chinese than for English, whereas the posterior lOTC showed greater activation for English than for Chinese. More importantly, both psychophysiological interaction analysis and resting-state functional connectivity analysis showed that the anterior lOTC was functionally connected to the ventral brain regions (e.g., left anterior fusiform gyrus, anterior temporal lobe, and ventral inferior frontal gyrus), whereas the posterior lOTC was functionally connected to the dorsal brain regions (e.g., left posterior superior temporal gyrus, supramarginal gyrus, and dorsal inferior frontal gyrus). These results suggest that the anterior and posterior lOTC are involved in semantic and non-semantic phonological access, respectively.
-
Hypnotizability is a psychophysiological trait associated with morphofunctional brain peculiarities and with several cognitive, sensorimotor and cardiovascular correlates. Behavioral and EEG studies indicate stronger functional equivalence (FE) between motor imagery and action in the individuals with high hypnotizability scores (Highs). We hypothesized that stronger FE leading to greater proneness to ideomotor behavior could be due to greater cortical excitability of the motor cortex. ⋯ Thus, the Highs' greater cortical excitability could sustain their greater FE and proneness to ideomotor behavior. In cognitive neuroscience these findings are relevant to the physiological interpretation of the response to sensorimotor suggestions by participants in the ordinary state of consciousness. In the clinical field they can predict the efficacy of mental training based on motor imagery and, possibly, the degree of imagery-induced cortical plasticity.
-
Depression is a serious global affective disorder and one of the most common neurological diseases. Tanshinone IIA (TSA) is the mainly active constituent of Salvia miltiorrhiza and has diverse biological effects, including anti-inflammatory and antioxidant effects and significant neuroprotective effects against cerebral ischemia and Alzheimer's disease. However, whether TSA has an antidepressant effect remains unknown. ⋯ TSA significantly increased the expression of p-ERK, p-CREB and BDNF proteins in dexamethasone-treated PC12 cells, and this enhancement was suppressed by pretreatment with the extracellular signal-regulated kinase (ERK) inhibitor SL327. Moreover, we observed that SL327 treatment markedly suppressed the increased levels of p-ERK, p-CREB and BDNF in mice hippocampus induced by TSA, preventing the antidepressant effects of TSA. Taken together, our results suggest that the antidepressant-like effects of TSA were mediated by ERK-CREB-BDNF pathway in mice hippocampus.
-
Microglia are the brain mononuclear phagocytes which plays a key role in neurodegenerative diseases, like Alzheimer's. Till date, microglia have been explored mostly for their neuro-inflammatory functions. Recent studies have shifted their focus towards less explored functions which involve non-autonomous clearance of protein aggregates. ⋯ Sulforaphane (SFN) treatment has shown to induce the phagocytic activity of Aβo treated microglial cells. In addition, low dose Aβo and SFN treatment have not shown modulation in the levels of pro-inflammatory mediators of microglia. Taken together, these findings suggest that SFN treatment may ameliorate the Aβo mediated decrease in microglial phagocytic activity.
-
Unfolded protein response is a signaling cascade triggered by misfolded proteins in the endoplasmic reticulum. Heat shock protein H4 (HSPH4) and A5 (HSPA5) are two chaperoning proteins present within the organelle, which target misfolded peptides during prolonged stress conditions. Epileptogenic insults and epileptic seizures are a notable source of stress on cells. ⋯ This characterization of HSPA5 and HSPH4 expression provided extensive information regarding spatial and temporal alterations of the two proteins during SE-induced epileptogenesis and following epilepsy manifestations. Up-regulation of both proteins implies stress exerted on ER during these disease phases. Taken together suggest a differential impact of epileptogenesis on HSPA5 and HSPH4 expression and indicate them as a possible target for pharmacological modulation of unfolded protein response.