Neuroscience
-
Large scale unbiased quantification of immunohistochemistry (IHC) is time consuming, expensive, and/or limited in scope. Heterogeneous tissue types such as brain tissue have presented a further challenge to the development of automated analysis, as differing cellular morphologies result in either limited applicability or require large amounts of training tissue for machine-learning methods. Here we present the use of QuPath, a free and open source software, to quantify whole-brain sections stained with the immunohistochemical markers IBA1 and AT8, for microglia and phosphorylated tau respectively. ⋯ This method is fast, automated, unbiased, and easily replicable. We compared swine brains that had undergone a closed head traumatic brain injury with brains of sham animals, and found a global increase in both microglial signal expression and phosphorylated tau. We discuss the IHC methods necessary to utilize this analysis and provide detailed instruction on the use of QuPath in the pixel-based analysis of whole-slide images.
-
Environmental enrichment has been shown to increase cognitive abilities and accelerate recovery from a number of disease states. Typically, enrichment protocols last from four to eight weeks, however, it has previously been shown that two weeks of environmental enrichment is sufficient to increase cognitive abilities and the proliferation of the astroglial stem cell pool in juvenile mice. The current study examines whether a short-term enrichment protocol can induce similar effects in adults as compared to juveniles. ⋯ We found that short-term environmental enrichment decreased anxiety behaviour and increased overall memory abilities similarly in juveniles and adults. However, the rate of acquisition on the Morris water maze, hippocampal Sox2 and Ki67 expression, and neurosphere potential increased in response to enrichment only in juveniles, suggesting that the effects of enrichment on these measures are age dependant. Together, these data suggest that the potential beneficial effects of environmental manipulations decrease with age.
-
Exercise affects positively on self-reported pain in musculoskeletal pain conditions possibly via top-down pain inhibitory networks. However, the role of cortical activity in these networks is unclear. The aim of the current exploratory study was to investigate the effects of acute exercise on cortical nociceptive processing and specifically the excitability in the human sensorimotor cortex. ⋯ In conclusion, acute exercise may have an effect on nociceptive processing in the sensorimotor cortex on oscillatory level. Research on cortical oscillations analyzing interaction between nociception and exercise is limited. This study presents results indicating brain oscillatory activity as a feasible research target for examining mechanisms interacting between exercise and cortical nociceptive processing.
-
Recent work has suggested that 5α-reduced metabolites of testosterone may contribute to the neuroprotection conferred by their parent androgen, as well as to sex differences in the incidence and progression of Alzheimer's disease (AD). This study investigated the effects of inhibiting 5α-reductase on object recognition memory (ORM), hippocampal dendritic morphology and proteins involved in AD pathology, in male 3xTg-AD mice. Male 6-month old wild-type or 3xTg-AD mice received daily injections of finasteride (50 mg/kg i.p.) or vehicle (18% β-cyclodextrin, 1% v/b.w.) for 20 days. ⋯ Hippocampal amyloid β levels were substantially higher in 3xTg-AD females compared to both vehicle and finasteride-treated 3xTg-AD males. Site-specific Tau phosphorylation was higher in 3xTg-AD mice compared to sex-matched wild-type controls, increasing slightly after finasteride treatment. These results suggest that 5α-reduced neurosteroids may play a role in testosterone-mediated neuroprotection and may contribute to sex differences in the development and severity of AD.
-
Non-invasive treatment methods for neuropathic pain are lacking. We assess how modulatory low intensity focused ultrasound (liFUS) at the L5 dorsal root ganglion (DRG) affects behavioral responses and sensory nerve action potentials (SNAPs) in a common peroneal nerve injury (CPNI) model. Rats were assessed for mechanical and thermal responses using Von Frey filaments (VFF) and the hot plate test (HPT) following CPNI surgery. ⋯ This is the first in vivo study of the impact of liFUS on peripheral nerve electrophysiology in a model of chronic pain. This study demonstrates the effects of liFUS on peripheral nerve electrophysiology in vivo. We found that external liFUS treatment results in transient decreased latency in common peroneal nerve (CPN) sensory nerve action potentials (SNAPs) with no change in signal amplitude.