Neuroscience
-
The cerebellum is involved in the coordination of movement. Its cellular composition is dominated by GABAergic neuronal types, and glial cells are known to express functional receptors. GABAergic signaling regulates cell proliferation, differentiation, and migration during neurodevelopment. ⋯ The second population showed an outward-rectifying current-voltage relationship and responded to muscimol, but dye coupling was absent. These cells received synaptic input and were NG2+, but evoked calcium waves failed to modulate the frequency of spontaneous postsynaptic currents (sPSCs) or signaling into NG2 glia. We conclude that GABAA receptor-mediated signaling is selective for NG2 glia in the WM of the cerebellum.
-
In the olfactory system, the endocannabinoid system (ECS) regulates sensory perception and memory. A major structure involved in these processes is the anterior piriform cortex (aPC), but the impact of ECS signaling in aPC circuitry is still scantly characterized. ⋯ Conversely, the decrease of inhibitory transmission induced by exogenous cannabinoid agonists or DSI do not seem to be impacted by these factors. Altogether, these results indicate that CB1 receptors exert an anatomically specific and differential control of inhibitory plasticity in the aPC, likely involved in spatiotemporal regulation of olfactory processes.
-
Sleep deprivation (SD) is a common issue in today's society. Sleep is essential for proper cognitive functions, including learning and memory. Furthermore, sleep disorders can alter pain information processing. ⋯ Both drugs reversed all behavioral changes induced by TSD. Furthermore, both drugs reversed the effect of RSD on memory acquisition, while only mecamylamine reversed the effect of RSD on locomotor activity. In conclusion, CA1 nicotinic receptors play a significant role in TSD/RSD-induced behavioral changes.