Neuroscience
-
Emotion recognition reflects the psychological and physiological status of humans. Numerous studies have investigated the neural mechanisms of emotion recognition based on electroencephalography (EEG) features. In the previous study, emotion target was presented under a static or irregular background, which made the response highly time-locked. ⋯ The degree of alpha entrainment (valued as normalized Shannon entropy), SSVEP amplitude and recognition accuracy were calculated as response features. The results indicated that: SSVEP amplitude and recognition accuracy positively correlated with each other in frequency domain (7-15 Hz); alpha entrainment, and recognition accuracy had similar linear variation in intensity domain (level 1-4), and had a threshold around intensity 3; the three basic emotions had no clear relationship with each other in recognition. This study provided a new sight for neuroscience and would be an important reference to clinical psychology.
-
The arcuate nucleus (ARH) is an important hypothalamic area for the homeostatic control of feeding and other metabolic functions. In the ARH, proopiomelanocortin- (POMC) and agouti-related peptide (AgRP)-expressing neurons play a key role in the central regulation of metabolism. These neurons are influenced by circulating factors, such as leptin and growth hormone (GH). ⋯ LepR GHR knockout mice showed decreased density of POMC innervation in the PVH and DMH, compared to control mice, whereas a reduction in the density of AgRP innervation was observed in all areas analyzed. Conversely, AgRP-specific ablation of GHR led to a significant reduction in AgRP projections to the PVH, LHA and DMH, without affecting POMC innervation. Our findings indicate that GH has direct trophic effects on the formation of POMC and AgRP axonal projections and provide additional evidence that GH regulates hypothalamic neurocircuits controlling energy homeostasis.
-
During neural network development, growing axons read a map of guidance cues expressed in the surrounding tissue that lead the axons toward their targets. In particular, Xenopus retinal ganglion axons use the cues Slit1 and Semaphorin 3a (Sema3a) at a key guidance decision point in the mid-diencephalon in order to continue on to their midbrain target, the optic tectum. The mechanisms that control the expression of these cues, however, are poorly understood. ⋯ The Lhx2-VP16 constitutive activator fusion reduces sema3a promoter function, and the Lhx2-En constitutive repressor fusion increases slit1 induction. In contrast, etv1 gain of function transactivates both guidance genes in vitro and in the forebrain. Based on these data, together with our previous work, we hypothesize that Fgf signalling promotes both slit1 and sema3a expression in the forebrain through Etv1, while using Lhx2/9 to limit the extent of expression, thereby establishing the proper boundaries of guidance cue expression.
-
Noise-induced hidden hearing loss (NIHHL), one of the family of conditions described as noise-induced hearing loss (NIHL), is characterized by synaptopathy following moderate noise exposure that causes only temporary threshold elevation. Long noncoding RNAs (lncRNAs) mediate several essential regulatory functions in a wide range of biological processes and diseases, but their roles in NIHHL remain largely unknown. In order to determine the potential roles of these lncRNAs in the pathogenesis of NIHHL, we first evaluated their expression in NIHHL mice model and mapped possible regulatory functions and targets using RNA-sequencing (RNA-seq). ⋯ KEGG analysis was also used to identify the potential pathways being affected in NIHHL. These analyses allowed us to identify the guanine nucleotide binding protein alpha stimulating (GNAS) gene as a key transcription factor and the adrenergic signaling pathway as a key pathway in the regulation of NIHHL pathogenesis. Our study is the first, to our knowledge, to isolate a lncRNA mediated regulatory pathway associated with NIHHL pathogenesis; these observations may provide fresh insight into the pathogenesis of NIHHL and may pave the way for therapeutic intervention in the future.
-
Stress induced tRNA halves (tiRNAs) as biomarkers for stroke and stroke therapy; Pre-clinical study.
tiRNAs are small non-coding RNAs generated by angiogenin-mediated tRNA cleavage during cellular stress. Some tiRNAs were shown to be cytoprotective, while other reports indicate that the generation of tiRNAs is cytotoxic. ⋯ We also evaluated the temporal changes in several tRNA modifying enzymes and showed a correlation between their expression and tRNA cleavage. In conclusion, we show that tiRNAs can serve as biomarkers for stroke and stroke therapy, further adding them to the repertoire of tools that can be used to monitor and treat stroke.