Neuroscience
-
Review
Presynaptic Black Box Opened by Pioneers at Biophysics Department in University College London.
The mechanism of chemical synaptic transmission was elucidated at the frog neuromuscular junction (NMJ) and at the squid giant synapse by Katz, Miledi and other researchers. Later progress in molecular biology revealed numerous types of proteins in mammalian central synapses. To establish molecular-functional correlation in synaptic transmission, it now seems essential to re-address the fundamental mechanisms at mammalian central synapses. ⋯ However, at the calyx of Held, unlike at the squid synapse, the input-output relationship had a wide safety margin, protecting transmitter release from a diminishment of presynaptic action potentials. As in the NMJ, Ca2+ remaining in the cytosol after action potential facilitates subsequent release. As a downstream mechanism of this residual Ca2+, a Ca2+-induced Ca2+ channel activation via high-affinity Ca2+ binding proteins was discovered at mammalian central synapses.
-
Gambierol is a marine polycyclic ether toxin, first isolated from cultured Gambierdiscus toxicus dinoflagellates collected in French Polynesia. The chemical synthesis of gambierol permitted the analyses of its mode of action which includes the selective inhibition of voltage-gated K+ (KV) channels. In the present study we investigated the action of synthetic gambierol at vertebrate neuromuscular junctions using conventional techniques. ⋯ Results show that nanomolar concentrations of gambierol inhibited the fast K+ current and prolonged the duration of the presynaptic action potential in motor nerve terminals, as revealed by presynaptic focal current recordings, increased stimulus-evoked quantal content in junctions blocked by high Mg2+-low Ca2+ medium, and by BoNT/A, reversed the postsynaptic block produced by d-tubocurarine and increased the transient Ca2+ signals in response to nerve-stimulation (1-10 Hz) in nerve terminals loaded with fluo-3/AM. The results suggest that gambierol, which on equimolar basis is more potent than 3,4-diaminopyridine, can have potential application in pathologies in which it is necessary to antagonize pre- or post-synaptic neuromuscular block, or both. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
-
Extracellular adenosine triphosphate (ATP) participates in maintaining the vascular tone in the CNS, particularly in the retina, via the tonic activity of ligand gated activated P2X1 receptors. P2X1 receptors are characterized by their high affinity for ATP and their strong desensitization to concentrations of ATP that are 200-fold lower than their EC50. The mechanism behind P2X1 tonic activity remains unclear. ⋯ In the presence of extracellular Ca2+ the activity of hP2X1 receptors is greatly amplified by its coupling with Ca2+-activated Cl- channels. Future studies addressing the relationship between hP2X1 receptors and Ca2+-activated Cl- channels in vascular smooth muscle cells should provide information about additional mechanisms that regulate the vascular tone and their potential as pharmaceutical targets. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
-
Attention deficit/hyperactivity disorder (ADHD) is the most prevalent psychiatric childhood disorder, characterized by hyperactivity, impulsivity and impaired attention, treated most frequently with methylphenidate (MPH). For children and adults with ADHD who do not respond satisfactorily or do not tolerate well stimulants such as MPH or D-Amphetamine, for them the alternative is to use Atomoxetine (ATX), a norepinephrine (NE) transporter inhibitor that increase extracellular NE. We examined the effects of ATX on behavior and hippocampal synaptic plasticity in the murine prenatal nicotine exposure (PNE) model of ADHD. ⋯ Paired-pulse ratios (PPR) were not significantly different for any condition. These results indicate that administration of ATX in a PNE model of ADHD reestablishes TBS-dependent LTP in CA3-CA1 synapses. The results suggest postsynaptic changes in synaptic plasticity as part of the mechanisms that underlie improvement of ADHD symptoms induced by ATX.
-
Dimethyl fumarate (DMF) is the only available approved drug for first line treatment of multiple sclerosis (MS), a lethal condition impairing central nervous system (CNS). To date, however, little is known of its mechanisms of action. Only recently, it has been suggested that DMF exerts neuroprotective effects acting as an immunomodulator and that it may alter the activation state of microglia cells, crucial in MS pathogenesis. ⋯ Here, we examine the effects of DMF treatment on microglia functional activities, as phenotype, morphology, processes motility and rearrangement, migration, ATP response and iron uptake in mouse primary microglia culture and acute hippocampal slices. We found that DMF treatment reduces microglia motility, downregulating functional response to ATP, increases ferritin uptake and pushes microglia towards an anti-inflammatory phenotype, thus reducing its proinflammatory reactivity in response to tissue damage. These results highlight the effects of this compound on microglia functions and provide new insights on the mechanism of action of DMF in MS treatment.